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Abstract— The work presented here focuses on the use of 
embodied neural network controllers for MAV (Micro-
unmanned Aerial Vehicles) teams. The computer model we 
have built aims to demonstrate how autonomous controllers for 
groups of flying robots can be successfully developed through 
simulations based on multi-agent systems and evolutionary 
robotics methodologies. We first introduce the field of 
autonomous flying robots, reviewing the most relevant 
contributes on this research field and highlighting the elements 
of novelty contained in our approach. We then describe the 
simulation model we have elaborated and the results obtained 
in different experimental scenarios. In all experiments, MAV 
teams made by four agents have to navigate autonomously 
through an unknown environment, reach a certain target and 
finally neutralize it through a self-detonation. The different 
setups comprise an environment with various obstacles 
(skyscrapers) and a fixed target, one with a moving target, and 
one where the target (fixed or moving) needs to be attacked 
cooperatively in order to be neutralized. The results obtained 
show how the evolved controllers are able to perform the 
various tasks with an accuracy level between 72% and 94% 
when the target has to be approached individually. The 
performance slightly decreases only when the target is both 
able to move and can only be neutralized through a 
coordinated operation. The paper ends with a discussion on the 
possible applications of autonomous MAV teams to real life 
scenarios. 

I. INTRODUCTION AND RELATED WORK 
uring the last decade several studies have been carried 
out on both wheeled and underwater autonomous 
vehicles driven by embodied neural network controllers 

(e.g. [1] and [2]). At the same time, the application of same 
principles to flying robots has not yet been thoroughly 
investigated. With the only notable exception of the systems 
developed by Floreano [3], Holland [4] and Buskey [5] it 
seems that current approaches on the development of 
autonomous controllers for aircraft mainly rely on 
techniques other than neural networks. Examples of these 
methodologies are behaviour-based robotics [6], genetic 
programming [7][8], evolution-based path planning [9], 
modeling field theory [10], and graph search methods [11]. 

In this study we use a multi-agent system (MAS) based on 
evolutionary robotics methodologies [12] to develop 
controller for MAVs for autonomous navigation, including 
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obstacle-avoidance and target reaching, in unknown 
environments. We are interested in investigating how local 
interactions between many autonomous and independent 
MAVs could in turn lead to an observable (and therefore 
exploitable) higher level collective behaviour. Derived from 
complex systems sciences, our idea is that continuous low-
level interactions between identical individuals, each of 
them owning just a minimal knowledge of the surrounding 
environment, could lead to the deployment of MAV teams 
where each aircraft acts independently from the others, still 
being able to take part in a bigger task. The combined use of 
evolutionary robotics and multi-agent systems will make 
possible to obtain collective behaviours without the need of 
designing a top-down cooperative strategy. 

Distributed control, intended as the process of 
coordinating the movements of a number of agents in order 
to make them performing a collective task without using a 
central controller, is generally considered a notably 
interesting problem from both a technological and scientific 
perspective [1][13]. Good examples of the complexity 
involved in designing effective cooperative strategies for 
teams composed of many unmanned vehicles can be seen in 
the works made by Hussain [14] and Gaudiano [15]. In order 
to reduce this complexity, many studies regarding the 
behaviour of groups of Unmanned Aerial Vehicles (UAVs) 
have concentrated on flocking and swarming behaviour 
(e.g., [16] and [17]). We are not interested in replicating 
such a phenomenon. Instead, the approach we have chosen 
for studying the emergence of cooperation is based on the 
so-called “reactive strategies” [7]. 

The reactive strategy approach has several advantages 
with respect to those belonging to the other main category of 
“deliberative approach”. Deliberative approach strategies 
focus on developing a specific flight path for each aircraft 
belonging to a team to follow (see for example [18]). 
Generating fixed routes in advance implies that a very good 
knowledge of the reference environment is available to the 
central controller (whether it is a human or a computer 
system). UAVs relying on such a kind of controller system 
could be therefore considered autonomous, in the sense that 
they will be able to autonomously follow a pre-planned 
flight path. But they would not have the ability of taking 
autonomous decisions, resulting therefore in a lack of 
intelligence (autonomy). This does not represent an issue for 
domains like civilian aviation, where all the needed 
information are immediately available. The lack of 
flexibility related to the “deliberative” approach becomes 
problematic instead if we try to apply the same principles to 
dynamic or unknown scenarios. These drawbacks have tried 
to been solved incorporating in deliberative approaches 
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some elements of adaptive replanning. The implementation 
of this kind of improvement requires equipping the aircraft 
with a set of sensors that makes them able to fetch 
previously unknown, non-accessible and/or non-existent 
information from the environment. The main idea in 
adaptive replanning is that a centralized controller generates 
a specific flight path for each UAV to follow based on the 
currently available information. UAVs strictly follow those 
paths until they detect some new elements through their 
sensors (e.g. an unknown enemy or an unexpected 
obstacles). When it does happens, the sensor information 
gathered is sent back to the controller, which may then 
decide to generate new flight paths for the entire team (or 
just part of it) and transmit them to the UAVs. A good 
example of adaptive replanning could be seen looking at the 
“UAV manager” concept elaborated by Rathinam et al. [19]. 
Despite the fact that adaptive replanning approach looks 
promising, many issues remain to be addressed in 
deliberative strategies. For example to decide when a 
replanning is required, and the amount of time needed to 
calculate and broadcast the new flight paths to the various 
UAVs are two non-trivial elements to consider. Scherer and 
colleagues [20] have recently identified a possible solution 
using two separated but interacting controllers that 
respectively act on a global and on a local level (“plan 
globally and react locally”). Even in this case, a good level 
of knowledge about the environment is still required.  

Generally speaking, we might argue that it is the need for 
a central controller to be highly problematic. As highlighted 
for example by Wu and colleagues [21], distributed control 
is generally preferable since its non-critical reliance on any 
specific element can in turn guarantee increased reliability, 
safety and speed of response to the entire system. In addition 
to this we believe that a distributed control system has as 
well a better potential to produce adaptive and flexible 
solutions for the tasks we are interested in studying. 

The main difference between the approach followed by us 
and a standard reactive strategy methodology as described in 
[7] mainly consists in the employment of a neural network 
controller instead of a properly defined decision tree. In both 
cases the controllers are subjected to an evolutionary process 
and therefore the use of computer simulators for the training 
phase results compulsory (unless we take into account some 
unusual alternatives, like a cable-array robot [22]). 

The basic principle followed by us is to some extents 
similar to the ones proposed in [4] and [5] for the 
autonomous control of unmanned helicopters. The controller 
we use is an embodied neural network which outputs affect 
the aircraft’s spatial orientation and its moving direction 
consequently. However our approach introduces at least 
three elements of novelty. The first is that we are focused on 
replicating the simplified dynamics of airplane-like UAVs 
instead than helicopters. Even employing a streamlined 
model as the one described herein, when compared to 
aircraft helicopters result much more flexible in adjusting 
their movements during the flight. If for example an 
unexpected obstacle arises, a helicopter could easily hover 
overhead, perform a 180 degrees yaw and then look for a 
different path to follow. When it comes to aircraft this kind 

of behaviour is not possible, so the on-line adjustments to 
the current route need to be extremely accurate. The only 
work to our knowledge where neural networks are applied to 
the control of non-helicopters or blimps aerial vehicles is the 
one made by Floreano and colleagues [3]. Furthermore, 
another major novelty consists in our decision of 
implementing a basic obstacle-avoidance mechanism, which 
represents an additional challenge to be addressed by the 
controller. Traditionally, obstacle-avoidance behaviour has 
not been taken into account in studies regarding UAV path 
planning (problem that affects also Floreano’s investigation). 
As pointed out by Rathbun [9] this is mainly due to the fact 
that UAVs have usually been restricted to operate in areas 
that do not contain any other vehicles outside the control of 
the authority in charge of it. Rathbun’s work - where an 
evolution-based path-planner results able to deal with 
movable and non-accurately estimated obstacles - constitutes 
one of the few meaningful exceptions to this trend. Finally, 
the controller we use is made of a single feed-forward neural 
network and not of different modules joined together, each 
of these dedicated to manage different sub-tasks as in [4] 
and [5]. The entire controller acts therefore as a single entity. 

II. DESCRIPTION OF THE MODEL 
As introduced in the previous paragraph, our approach 
requires the employment of a computer simulator for the 
evolution of UAVs’ autonomous controllers. With the 
preliminary experiments carried out we have outlined the 
general specifics for a simulator of this kind. We have at the 
same time identified the minimal sensors requirements for 
allowing UAVs to perform navigation and search tasks both 
inside plain and obstacle-full environments (see [23]). 

The structure of the simulator is quite simple. A team is 
composed by four MAVs1, each endowed with its own 
neural network controller, identical to the ones of its 
teammates. At the beginning of a test, an “enemy” target is 
deployed somewhere inside the environment. The simulated 
scenario consists of a 2-D representation of Canary Wharf 
financial district in London. Starting from the four area’s 
corners and facing the center of the environment, the MAVs 
have to fly toward the target attempting to eliminate it. In 
order to neutralize the target, one of the MAVs needs to 
perform a self-detonation when it is close enough to it (2.2 
meters or less). A test ends when the target has been 
destroyed or no MAVs are still living. A MAV will die if it 
performs a detonation, if it attempts to exit from the 
environment’s boundaries, if it collides against a teammate, 
if it runs out of energy, or if it crashes against a building. 

Automatic target acquisition (ATR) is not provided by the 
MAVs. In this way they do not need to execute such an 
intensive computational task (even if the job could be 
effectively tackled cooperatively, as demonstrated for 
example by Dasgupta [24]). Our hypothesis consists on the 
presence of a satellite system that constantly monitors the 
target and broadcasts real-time information about its position 
to all the team members. In this way the MAVs - equipped 

 
1 Even if a proper classification is still lacking, a MAV can be roughly 
defined as a small-size UAV 
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with a GPS receiver - could easily calculate their distance 
from the target matching the two data sources gathered. 
Then a simple compass can as well easily allow the MAVs 
to determine the relative direction on which the target is. In 
our simulator each MAV is in fact fed with information 
about the distance between itself and the target, as well as 
the angle that separates the two agents based on the current 
MAV’s heading. This information is received by the neural 
network by means of four input neurons: one encoding the 
distance (using discrete values), the others three the angle 
(using a Boolean representation of eight possible sub-
spaces). The MAVs are also endowed with three ultra-sonic 
sensors, capable to detect the presence of  an obstacle, which 
could be the target, a teammate or a building. This 
information is encoded using three continuous neurons, each 
of them activated with a value representing the distance from 
the current sensor and the closest obstacle perceived by it (if 
any within a certain range). The input neurons are connected 
to the neural network’s hidden layer, made of 15 continuous 
neurons. The neural network’s output layer consists of just 
two neurons. One output unit controls the MAV’s steering 
direction (+/-20 degrees in the time unit); the other one is a 
Boolean neuron that, when it turns to 1, causes the MAV to 
carry out the detonation. 

 

 
Fig. 1. Graphical representation of the neural network controller employed. 
 

The fact that we are simulating an airplane-like motion 
implies the constraint, for the MAVs, of being always on 
movement. The speed is instead assumed as constant. 

The evolution toward a controller able to perform the 
desired task is made possible by a genetic algorithm. An 
initial population of 100 teams is created with randomly 
assigned connection weights and biases ranging from -1.0 
and +1.0. Each MAVs team is tested four times with the 
target deployed in randomly chosen positions (twice the 
target will be inside an “enclosed area” at the center of the 
environment, surrounded by buildings and with narrow 
entrances, twice it will be put outside this area). At the end 
of each generation the 20 individuals that has performed the 
best scores according to the fitness formula are selected for 
reproduction. Each team generates 5 copies of its genome, 
on which the mutation operator is then applied. Each gene of 
the copied genome is modified, with probability 0.25, of a 
random amount between -0.5 and +0.5. The only exception 
is for the best individual of the current generation, which 
generates a copy of its genome without any modifications 
(elitism). The resulting 100 individuals will constitute the 

new population at the next generation. The evolutionary 
process lasts for 2,500 generations and it is repeated 10 
times with the results coming from all the different runs 
averaged in order to obtain more reliable data. 

 

 
 

Fig. 2. The 2-D simulated environment used in our model. The obstacles, 
corresponding to the tallest buildings present in Canary Wharf area, have 

been highlighted. 
 
The results coming from our preliminary analysis [23] 

show how the elaborated set up could lead quite easily to the 
proper evolution of the desired behaviour. At the end of the 
evolution, on average we have the 93.46% of tests 
successfully concluded into plain environments and 87.18% 
when obstacles are present. 

III. EXPERIMENTS 

A. Movable target 
In this experimental scenario, the target is able to detect a 

MAV approaching it. This new property of the target has 
been introduced to increase the complexity of the task and 
test the robustness of the model. During each time step, if a 
MAV is closer than 15 meters to the target, the latter can 
detect the aircraft with probability 0.5. In the event of 
detection, the target will then move away from the aircraft in 
order to maximize the distance from it. The target will 
remain in “MAV detected mode”, and will keep moving 
away during every step, until the aircraft will die or the 
distance between the two agents will be over the 38 meters 
threshold. 

The fitness formula used is the following: 
 

 (1) 

 
where: α is the average distance (in pixels) between the 

target and the team member detonated closest to it, 
calculated basing on the various tests; β is the average 
amount of energy retained by the MAV detonated closest to 
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the target2; σ is the number of tests concluded by the given 
team with the elimination of the target; Φ is the total number 
of MAVs remained alive after the four tests (maximum 12). 
It is interesting to consider how the fitness formula we have 
decided to use does not require taking into account any 
information about the environment3, like waypoints 
disseminated in specific places (as did for example in [4] 
and [20]). Navigation and obstacle-avoidance abilities 
emerge run-time as sub-tasks necessary for the completion 
of the main task, which is to neutralize the target. 

Five simulations have been carried out where we vary the 
escaping speed of the target. Given the MAVs’ flying speed 
of 55 km/h, the target speeds in the various simulations 
respectively correspond to 27.5 (Simulation A1: target speed 
= MAV speed/2), 18.33 (Simulation A2: target speed = 
MAV speed/3), 13.75 (Simulation A3: target speed = MAV 
speed/4), 11 (Simulation A4: target speed = MAV speed/5) 
and 9.16 (Simulation A5: target speed = MAV speed/6) 
km/h. The results obtained are summarized into Table I. 

 
TABLE I 

RESULTS FOR SIMULATIONS A 
Sim Av. 

fitness 
Max 

fitness 
Av. 

success 
% 

Av. dist 
from the 

target (px) 

Min. dist 
from the 

target (px) 
A1 138.93 395.18 54.48 92.94 1.34 
A2 198.08 409.67 78.28 107 1.09 
A3 250.68 411.74 81.89 72.47 0.95 
A4 258.72 409.9 83.3 70.03 0.98 
A5 242.42 413.05 84.06 95.53 0.81 

 
Observing the outcome of these simulations - particularly 

with regard to the average fitness - we can easily identify a 
kind of threshold. Simulations A3, A4 and A5 seem to 
perform equally well according to the various parameters 
measured. Simulation A2 produces a significantly worse 
performance for the average fitness, but could be considered 
performing reasonably well if we take into account both the 
maximum fitness and the average percentage of tests 
concluded successfully. In simulation A1 the success rate of 
the MAVs drops instead. 

Comparing these results with the ones obtained using a 
static target, we can notice a general performance 
decrement. As clearly shown in Fig. 3, the difference is 
mainly concentrated on the average values, while the 
maximum ones (i.e., the best individuals/controllers within a 
certain generation) tend to reach similar level of 
performance. The main conclusion draw from this 
experiment is that the algorithm setup can evolve MAV 
controllers able to navigate through unknown environments 
and autonomously reach and destroy a target, not only when 
the latter is fixed on a certain position, but also if it is able to 
move away from them. The only constraint is that, in order 
to keep a reasonable success rate, the target should not be 
able to move faster than one third of the MAVs’ speed. This 
 
2 The MAVs start with 5,000 energy units. They spend 2.14 energy units per 
time, step, moving 2.24 meters far. 
3 For the sake of accuracy the size of the environment is used in order to 
scale some of the input values provided to the neural networks. Anyway, it 
has been proved that the neural network is able to evolve for carrying out 
the desired task even using non-scaled input values. 

is quite a reasonable assumption if we suppose that the target 
is not a vehicle, but a person instead. Considering that the 
moving speed of an average person moving in crowded 
environment could be approximated to 4-7 km/h while 
walking, and 15-20 km/h while running, we might argue that 
the evolved controllers are able to accomplish their task with 
a good degree of confidence even against a movable target4. 

 

 
Fig. 3.  Average and maximum fitness for simulations A3, A4 and A5 

compared to the preliminary results obtained with a fixed target. 
 

B. Cooperative task 
The setup labeled as experiment B adds the constraint of 

requiring two MAVs to detonate against the target at the 
same time (i.e., within a limited maximum number of time-
steps apart from each other, since the simulation works in 
discrete time steps) in order to neutralize it. The target 
begins each training epoch with the assigned status of 
“intact”. When it happens that one of the MAVs detonates 
close enough to it (i.e., the same situation that in the 
previous setups would have provoked the elimination of the 
target), the target’s status switches to “damaged”. If a second 
MAV manages to detonate close enough to the target while 
this is still in the “damaged” mode, the target will be 
eliminated. Otherwise, after 10 time-steps of “damaged” 
state, the target will restore its original “intact” condition 
and the simulation will goes on as usual till the 
neutralization of the target or the failure of the MAV team. 

In order to make the MAVs able to accomplish this task, 
we have provided them with the capability of gathering new 
pieces of information from the environment. Each member 
of the team is now able to detect both the status of the target 
(“intact” rather than “damaged”) and the presence of a 
teammate within a certain distance. This information is 
given in input to the neural controller through two additional 
Boolean neurons. These two neurons implement a kind of 
logic OR. A part of being in the proximity of the target, in 
 
4 Consider that a typical MAV platform, as could be the Aerovironment’s 
WASP III, is able to reach a speed of 65 km/h (for full specifications look 
at: http://www.avinc.com/downloads/Wasp_III.pdf). One third of this speed 
roughly corresponds to 21.5 km/h, which is a value comparable to the 15-20 
km/h suggested as the maximum speed reachable by an average person 
running. 
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order to decide the proper moment in which to detonate a 
MAV needs in fact to know that there is a teammate close to 
it, or that the target has recently been damaged (i.e., it is 
currently on the “damaged” status), or that both conditions 
(closeness and damaged) are true. Three neurons have been 
added to the hidden layer as well, in order to make the neural 
network able to cope with the increased amount of 
information collected from the environment. 

 

 
Fig. 4. The neural network architecture used for experiment B. 

 
The fitness formula has been also modified in order to let 

the new desired behavior to evolve. We have now 
introduced the concepts of “target approached” and “target 
damaged”. At the end of a test, we define the target as 
“approached” if at least one MAV has detonated within a 56 
meters range from it. The target is considered “damaged” 
instead if at least one MAV has managed to hit it. These 
modifications tend to recreate what we could call an 
incremental evolutionary process (though if pursued in a 
different way than what has been done for example by 
Barlow and colleagues [8]). The MAVs initially learn how 
to perform the simplest sub-tasks (avoiding obstacles and 
approaching the target) and then progressively move toward 
the more complicated sub-tasks (damaging and neutralizing 
the target respectively), which in turns make the 
accomplishment of the overall task possible. 

Putting all together, the new fitness formula is: 
 

   (2) 

 
where: ϒ is the number of tests concluded with at least 

one MAV “approaching” the target; η is the number of tests 
concluded with at least one MAV “damaging” the target; λ 
is the number of tests concluded successfully and ω = 50 (ω 
is just a parameter arbitrary chosen in order to assign 
different specific weights to ϒ, η and λ). Parameters Φ and β 
have a similar meaning to the ones they have in (1), as they 
respectively represent the total number of ΜΑVs survived at 
the end of the all tests and the average amount of energy 
retained by the MAV that had eventually neutralized the 
target. Consider that now every team is tested 12 times and 
the evolutionary process lasts for 5,000 generations. 

 
Fig. 5. Percentages of tests respectively concluded with the approaching, the 

damaging and the neutralization of the target when it is fixed and it has to 
be attacked cooperatively. 

 
Fig. 5 and 6 show the results obtained with this 

experimental setup, respectively with a fixed and a movable 
target. The simulations carried out using a fixed target have 
produced a surprisingly good performance. On average, for 
the individuals belonging to the last generation, more than 
70% of tests are successful, while 90% finishes with the 
target hit at least once. An example of the evolved behavior 
can be observed on Fig. 7. 

 
Fig. 6. Percentages of tests respectively concluded with the approaching, the 
damaging and the neutralization of the target when it is able to move and it 

has to be attacked cooperatively. 
 

The performance of the teams dramatically decreases 
when the target is moving, hence suggesting the need for the 
introduction of a form of communication within the MAVs 
that would positively affect the likelihood of successfully 
complete the task. In this experimental setup, only 50% of 
tests ends with the neutralization of the target, even if the 
percentages of tests concluded both with the approaching 
and with the damaging of the target are comparable with the 
ones obtained in case of a non-movable target. Furthermore, 
we have to consider that we are illustrating average results 
referred to an entire population. It means that, inside this 
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population, the likelihood of having MAVs team particularly 
good in performing the desired task is extremely high. 

 
Fig. 7. Flight paths followed by the members of a team belonging to the last 

generation in order to reach the target and attack it cooperatively. 

C. Workarounds on the genetic algorithm 
In order to improve the convergence speed of the 

evolutionary algorithm and to explore the solution space in a 
more efficient way, a new experiment has been carried out 
implementing three genetic operators different than before: 
1) Selection operator. As before, the best team of every 

generation is copied to the following one without any 
modifications, but then 94 pairs of parents are chosen for 
reproduction via a fitness-proportionate selection 
implemented as a “roulette wheel” sampling5 [25]. 

2) Crossover operator, which has been introduced in the 
form described in [26]. Each of the selected pairs of 
parents generates a single offspring. In this way 94 new 
individuals are created. Crossover works in the following 
way: for each non-input neuron of the offspring, one of 
the two parents is selected randomly; the child inherits 
from the chosen parent the input connection weights to 
that neuron as well as the neuron’s bias. 

3) Mutation operator, which affects all the 94 offspring 
generated through crossover. For each neural network, 3 
non-input neurons are selected randomly. The biases and 
all the incoming connection weights of the selected 
neurons are then subjected to a random mutation, adding 
to them a random value ranging between -0.5 and +0.5. 

The remaining 5 individuals are created with randomly 
assigned connection weights and biases, in order to preserve 
the algorithm from the risk of premature convergence. 

The results obtained by this new setup, detailed on the 
second row of Table 2, have highlighted a strong 
performance decreasing if compared with those coming from 
experiment B. The situation slightly improves if we scale the 
fitness values used to calculate the roulette’s slices through 
 
5 In order to calculate the areas of the roulette’s slices, the expected value 
for each individual has been measured as the ratio between its fitness and 
the average fitness of the entire population. 

the “sigma-scaling” method [25]. The results obtained in that 
(third row of Table II) remain anyway worse than the ones 
generated by experiment B. 
 

TABLE II 
COMPARISON BETWEEN SIMULATIONS B AND C 

Sim Av. fitness Max fitness Av. succ. % 
B – non movable target 1023.8 1285.8 71.82 
C – non scaled values 771.3 1133.7 47.47 

C – scaled values 856.59 1253.9 56.69 
 

Some explorative analyses have also been conducted 
using a binary genome, instead of that with real values. 
Employing both Boolean and Gray Code encodings, with 
single and multi-points crossovers and different mutation 
rates, the results indicate a significant difficulty for the 
network to reach a weight set appropriate for the task, and 
therefore these conditions have been ignored. 

D. Generalization of the model 
For the purpose of analyzing how the elaborated model 

could be generalized to different simulated environment, we 
have carried out few experiments varying the reference 
scenario. Measured in pixels, the original environment was 
sized 710x760. We have then created a new experimental 
setup - 600x600 large - with few obstacles present inside it.  

 

 
 

Fig. 8. The 2-D simulated environment used for the generalization 
experiments, with new obstacles layout (Paris, La Défense District). 

 
The new environment (see Fig. 8) is smaller than the 

previous one and, summed to the presence of buildings and 
of a narrower enclosed area where the target is deployed, has 
provoked some troubles to the genetic algorithm in order to 
identify a proper set of connection weights and biases. In 
order to obtain a proper evolution, we have been required to 
modify the fitness formula in the following way: 
 

 (3) 

 
This formula differs from the original one for the smaller 

denominator applied to parameter β (10 instead than 50) and 
particularly for the introduction of the ν parameter, which 
represents the average difference between the distance of the 

2722



 
 

 

MAVs from the target at the beginning and at the end of a 
test. After 2,000 generations, the percentage of succeeded 
tests for this experimental setup has reached the 85% level. 

Even if not conclusive, this further investigation has 
highlighted that it might be feasible to adapt the basic model 
described in this paper to any kinds of environments. It is 
not guaranteed that the original fitness formula could fit well 
to differently shaped and sized scenarios. The modifications 
made on this case have been marginal, but further studies are 
required in order to identify a general rule to follow when 
applying our model to different simulated environments. 

IV. DISCUSSION AND CONCLUSION 
Most researches are currently targeted at studying MAVs 

mainly from an ISTAR (Intelligence, Surveillance, Target 
Acquisition, Reconnaissance) perspective (see for example 
[27] and [28]). Our work focuses instead on the usage of 
MAVs for different kinds of tasks, requiring them having a 
strike capability available. We can imagine at least two 
possible scenarios in which MAVs provided with strike 
capability could be effectively employed. 

The first scenario is related to counter-terrorism 
operations within urban environments. One of the most 
feared menaces by Western countries’ governments is a non-
conventional attack coming from a terrorist group. As we 
have seen during last years, particularly into the Middle 
East, the so-called “kamikaze strategy” is frequently 
employed, due to its effectiveness and simplicity both from 
an organizational and an economical perspective. One of the 
problems when facing menaces of this type is related to the 
fact that - even if the attacker is identified in advance - it 
might be difficult to make him inoffensive. Needless to say, 
the “direct approach”, involving the usage of a security task 
force for approaching and neutralizing the target, is in fact a 
highly risky operation. MAVs could be exploited as a valid 
alternative to humans, or as an additional tool to existing 
approaches. Electrical propelled flying robots are in fact able 
to flight silently6 and out from the typical line of sight of a 
person, allowing them to remain unnoticed while reaching 
their target. They would then be able to neutralize the 
attacker performing both a lethal (if equipped with a small 
amount of explosive) or a non-lethal (using some chemical 
elements able to block the device starter, or employing 
devices like flashbang grenades in order to facilitate the 
intervention of a land-based security task-force) action. 

The second scenario is related to an offensive operation 
into a warfare environment. Given their small size and 
portability, MAVs can be easily fit into soldiers’ backpacks. 
This could allow special units, composed of just few 
soldiers, to carry with them a very flexible and powerful 
weapon. Once launched, each MAV could in fact become 
part of a larger swarm and then cooperatively attack a target 
which would be instead impossible to offend by the soldiers 
through their traditional portable weapons. The outcomes 

 
6 Of course the propellers produce a certain amount of noise, but it typically 
results impossible to be heard in a crowded place (and particularly if the 
MAV is flying at a sufficient height). Consider also that MAVs could easily 
switch their propellers off while approaching the attacker from above. 

obtained by a MAV team acting in this way could be just 
slightly minor than the ones obtainable through the 
employment of a low-potential missile. Despite the less 
damaging potential, the advantages, namely portability and 
flexibility, are surely enormous. 

The research we have carried out up to date has 
demonstrated how a MAV team could effectively navigate 
through unknown environments and reach a certain position 
into the space. Particularly interesting is the fact that the 
neural networks employed in our simulations are very 
simple and they do not rely on any kind of short or long-
term memories (thus confirming as well as extending the 
validity of what Buskey et al. have already found [29]). This 
would allow real MAVs to easily execute particular 
operations like the ones described above. The latest 
experiments elaborated have also shown that these MAVs 
could be able as well to reach a certain level of coordination 
among them, in order to perform tasks requiring 
cooperation. Future experiments will be mainly focused on 
the role played by explicit communication between MAVs. 
The purpose of introducing communication consists in 
investigating how its presence could lead to a better level of 
coordination between the agents and in turn allowing the 
teams to increase their effectiveness in performing complex 
tasks. The approach toward the evolution of a language will 
be based upon symbol grounding theory as introduced by 
Harnad [30] and then extended by Cangelosi et al. [31][32]. 

One potential criticism of the work we have done is 
related to the lack of realism which affects the simulator 
developed. Our aim was to demonstrate a principle through a 
computer simulation model, i.e. to demonstrate that neural 
networks could be successfully used as distributed 
controllers for teams of MAVs. The simulator we have 
developed serves primarily this purpose. It does not aim to 
evolve neural network controllers immediately transferable 
to real aircraft. To some extents, we are assuming that the 
hardware platform we are simulating is able to perform the 
operations we ask it to do. For instance, when a MAV is on a 
certain position and we want it to move 50 centimeters 
forward along its heading direction, we assume the hardware 
as capable to guarantee the execution of this movement. We 
are currently working on a 3-D version of the simulator that 
can better capture some of the real flight dynamics. Even if 
implementing such a modification could lead to a scenario 
with a higher degree of realism than the previous one, our 
principal interest consists in looking for the possible 
evolution of new kinds of strategies, different than the ones 
emerged before due to the more complex environment. From 
a technical point of view, moving from a 2-D to a 3-D 
simulator could be seen as the simple addition of a degree of 
freedom to the former model. A certain degree of 
approximation, in fact, is always required when building a 
simulator (as it happens by definition for every kind of 
model). The point is how to find the correct trade-off 
between accurateness and simplicity of the simulator/model. 
This balance could be quite easy to identify when the 
simulated objects are wheeled robots, since the movement of 
a body on a plain surface is affected by few and easily 
replicable forces (this is demonstrated by the enormous 
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number of software applications able to correctly cope with 
this task [33]). The issues are different if we consider flight 
motion, where the amount of physics variables involved is 
extremely bigger than for wheeled/ground motion. As a first 
step, to keep the level of complexity manageable, we have 
decided that the new 3-D simulator will not be based on any 
physics engine. Simulations will still guarantee that the 
MAV movements will be “realistic”, even if not perfectly 
accurate from a physics point of view. This will allow us to 
focus on a first instance on the study of coordination and 
communication strategies. Further extensions of this work 
with experiments on real MAVs will include the use of more 
realistic physics engine platforms. 

Finally, we would like to consider the inclusion of other 
techniques for the MAV controllers. Modeling field theory 
[10][34] has been recently proposed as a learning technique 
for multi-agent simulation systems. One of the advantages of 
this approach is that of overcoming computational 
complexity and allowing better scaling up of the model 
capabilities, e.g. in terms of population size and internal 
representations. Future studies will explore the combination 
of modeling field theory within the agent control systems. 
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