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The research project described herein focuses on the design of autonomous controllers for MAVs (Micro-unmanned Aerial Vehicle). The design 
methodology adopted is Evolutionary Robotics (ER), which relies on the combined use of Neural Networks (NNs) and Evolutionary Algorithms (EAs). 
The main idea behind ER is that a robot is endowed with a set of sensors that allow it to ‘sense’ the surrounding environment. A neural network 
controls the robot’s behaviour processing the information gathered by these sensors and producing a correspondent motor response. A proper set of 
connection weights and biases for the neural network is identified via an evolutionary algorithm which starts testing the performance obtained by 
‘random’ controllers and progressively attempts to improve these until the desired behaviour is obtained. Given the nature of the design methodology 
adopted, computer simulations are required. Preliminary results have already been obtained using a simplified 2D model reproducing the layout of 
Canary Wharf, London. The ongoing work presented here focuses on the use of a more accurate 3D computer simulator instead.

Overview

In the first experimental setup, 
a single MAV is used. At the 
beginning of each test epoch the 
target is deployed at a random 
position within an obstacle-free 
environment - a parallelepiped 
box with the dimension 1,000 
(X) x 1,500 (Z) x 600 (Y). The 
MAV has to navigate to a certain 
target area and, upon reaching 
it, perform a specific operation 
(represented as the activation of 
the Boolean output unit, which 
can only be operated once per 
epoch) . The resu l ts have 
demonstrated that a controller 
fit for the execution of the 
above task can evolve in just a 
few hundreds generations. At 
the end of the evolution, the 
average MAV in the population 
is able to carry out the task 
64.91% of times, while the best 
one scores 99.52%.

Neural network controller

Movable target

The second experimental condition adds to the basic one 
a target able to detect an approaching MAV and then 
attempting to move away from it. The target detects the 
aircraft when within a certain distance range and ‘escapes’ 
at different speeds according to the setup analysed. The 
results have suggested that an MAV can keep a success 
rate comparable to the fixed-target scenario for a target 
moving up to half the speed of the aircraft (best success 
rate: 98.75% when target speed is 1/5th, 99.55% when 
1/4th, 97.07% when 1/3rd, 90.5% when half). Over that 
threshold, the performance significantly decreases.

Implicit cooperation

In this experimental setup a team consisting of two MAVs 
is employed. In the test the team is subject to, the MAVs 
have to reach the target area independently and then, 
once there, activate the Boolean output neuron of their 
networks in quick succession. Compared to previous 
scenarios, the only additional information each MAV can 
now rely on is: (1) the presence of the teammate within a 
certain distance; (2) the fact that the teammate has 
recently activated its Boolean neuron inside the target 
area. With a target unable to move, the average success 
rate for the entire population reaches the 45.3%, while 
the best team scores a 81.92%. When the target can 
move, these values are 36.2% and 72.33% respectively.

Basic navigation

With the increasing 
complexity of the 
t a s k s a n a l y z e d , 
c o n t r o l l e r s w i t h 
hidden layers, short-
term memories and 
additional inputs are 
i n t r o d u c e d . T h e 
encoding of the input 
i n f o r m a t i o n 
(normalised within a 
c e r t a i n l i m i t e d 
continuous range or 
discretised) varies as 
well for the different 
scenarios.
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In the basic scenario, the controller used is a 
two-layer feed-forward NN. The network 
receives input information about the distance 
from the target, as well as the difference in 
horizontal and vertical angles compared to the 
‘ideal’ trajectory. The output consists of two 
continuous neurons, generating real values used 
by the MAV to control yaw and pitch rotations, 
and one general purpose Boolean unit.

Top-right: a screenshot of the 3D simulator; top-left: the architecture of one of the NN controllers used; 
above this label: a 3D model of Canary Wharf (http://www.aquiva.co.uk/canarywharf) which will be 
implemented in future versions of the simulator; at right of this label: trajectories followed during a test by a 
team consisting of 4 MAVs sharing the same controller.


