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Abstract - This article focuses on the use of Multi-Agent 
Systems for modelling of Micro-unmanned Aerial 
Vehicles (MAVs) in a distributed control task. The task 
regards a search and destroy scenario in the context of 
security and urban counter-terrorism. In the 
simulations developed, a swarm composed of four 
autonomous flying robots, driven by an embodied neural 
network controller, has to approach a target deployed 
somewhere within the given environment. When close 
enough to the target, one of the aircraft needs to carry 
out a detonation in order to neutralize it. The controllers 
used by the MAVs evolve through a genetic algorithm. 
The preliminary results presented here demonstrate how 
the adaptive evolutionary approach can be successfully 
employed to develop controllers of this kind. The MAV 
swarms evolved in this way are in fact able to reach and 
hit the target, navigating through an obstacle-full 
environment. Further works on this model will focus on 
the development of a 3D physical simulator, in order to 
move towards the usage of MAVs with neural network 
controllers in real applicative urban scenarios. 
 
Keywords: MAVs, multi-agent systems, autonomous 
robotics, obstacle-avoidance, neural networks, genetic 
algorithms, embodied cognition. 
 

1 Distributed control in Multi-Agent 
Systems (MAS) 

Distributed control, particularly when it requires a certain 
level of coordination/cooperation [1][2][3], is a notably 
interesting problem from both a technological and 
scientific perspective. Compared to centralised control 
where a central controller (e.g. human operator or 
airplane’s “leader” agent) is responsible for (pre)planning, 
task-assignment and supervision of the coordination task, 
in distributed control systems intelligent autonomous (or 
semi-autonomous) agents are capable of sensing, acting, 
cognition and communication and together contribute to 
the task solution. These network-centric systems only 
require partial interaction with other agents, and may 
necessitate simpler architectures and individual resource 
requirements as knowledge is distributed in the 
population. 

 The significant advantages of this approach are that 
the system is more robust, adaptive and fault tolerant since 
there is no critical reliance on any specific individual, and 
that decentralization results in increased reliability, safety 
and speed of response [3][4]. In addition, distributed 
approaches have the benefit of not requiring the full pre-
planning of the cooperative strategy. Adaptive solutions 
can emerge at runtime through the interaction between 
autonomous individuals and from the task and 
environment requirements, which might not be fully 
accessible at the beginning of the problem. 
 Studies on distributed control greatly benefit from 
the utilization of Multi-Agent Systems (MAS), since they 
provide a platform for simulation and testing of various 
hypotheses based on the principle of distributed (artificial) 
intelligence [5]. Distributed control MAS approaches have 
been used in various domains, such as unmanned air, 
terrestrial/underwater vehicles, search and rescue 
scenarios, collective robotics, social cognition etc. For 
example, Sastry and colleagues [4] have focused on 
coordination and distributed control in unmanned 
underwater vehicles; Sykara and collaborators [6] have 
concentrated their attention on the study of hybrid rescue 
group systems based on humans, software agents, and 
autonomous robots. What they propose are coordination 
architectures capable of quickly finding optimal solutions 
to the combined problems of task allocation, scheduling, 
and path-planning subject to system constraints. In the 
SWARM-BOT project [3][7] groups of robots evolve a 
cooperative strategy for exploratory tasks. In such a study 
distributed coordination implies that the characteristics of 
the group’s behaviour (e.g. individual sensorimotor 
strategies, the roles played by the different robots, the 
synchronization problems raised by their interactions) are 
not managed centrally by one or few “leaders” but are the 
result of self-organizing processes instead. Examples of 
these processes are “positive feedback” (if each individual 
of a group follows a rule of the type “do what the majority 
does”, the individuals’ behaviours will tend to become 
homogeneous) or “consumption of building blocks” (e.g. 
if the number of individuals forming a group is limited, 
the process of convergence towards the same behaviour 
caused by a positive feedback mechanism will necessarily 
slow down and then stop). Finally, various MAS models 
of social cognition have been proposed, such as those 
modelling animal collaborative tasks such as in ant 

1043



colonies (which have inspired the SWARM-BOT 
application) and predator group behaviour [8]. 
 The goal of this paper is to introduce a new 
methodology, based on MAS, to develop autonomous 
controller systems for unmanned aerial vehicles (UAVs). 
We will focus on a particular category of UAVs 
characterised by their very small size, the so-called Micro-
unmanned Aerial Vehicles (MAVs). The interest in such a 
model arise from the fact that, given their specifications, 
swarms composed by many MAVs could be successfully 
employed for counter-terrorism operations to be carried 
out within urban crowded environments. 

2 Autonomous UAVs/MAVs path-
planning 

Typically, the UAVs1 used nowadays in real applicative 
scenarios are dynamically remote controlled (think for 
instance about the famous Predator, which is currently 
widely employed in the main warfare environments) by a 
human crew staying in a remote position. Many UAVs, at 
the same time, also have their own guidance systems, via 
which they can fly autonomously. The limitation is that 
usually these guidance systems are slightly similar to 
automatic pilots used within the civilian aviation domain 
as they simply provide a means of keeping the UAVs 
following a given pre-planned route. 
 During the last few years we have noticed an 
increasing interest in developing intelligent autonomous 
UAVs’ controller systems. The focusing toward 
autonomous guidance systems is not only an economical 
matter, although the use of autonomous aircraft instead of 
the usual combination “manned airplane plus human 
pilot” would allow to save the enormous amount of 
money normally required for pilot training, skills 
upgrading, and so on. Computer software can frequently 
outperform humans in carrying out many different tasks, 
both in terms of reliability (for example, consider the 
“dull” factor which Cambone and colleagues refer to [9]) 
and accuracy (computer software is more accurate than a 
human pilot to perform an already planned manoeuvre 
and, most important of all, it is able to perform with the 
shortest reaction time possible). For tasks where more 
than a single UAV has to be employed, for example 
because a certain level of cooperation is required, the 
magnitude of the problem increases accordingly. 
 According to Richards and colleagues [10] current 
approaches for autonomous cooperative UAV control can 
be separated into the following strategies2: 
 

• deliberative approach: focused on developing a 
specific flight path for each UAV to follow. Such 
flight paths are rigid and they cannot be altered 

                                                
1 Within this section we will use the term UAV in a generic way, 
meaning any possible kind of unmanned aerial vehicle, including MAVs. 
2 In reality, Richards, Whitley and Beveridge classify these approaches in 
four different groups. For simplicity purposes, we limit our analysis to 
only three of these, excluding the “behaviour based controller systems”. 

even in the event that new information is 
discovered. In other words, the entire scenario is 
assumed to be already known. This approach 
could be successfully employed for civilian flight 
planning, but it simply results in being unusable 
in a military perspective. An example of this 
approach is in the work by Ablavsky [11]; 

• adaptive replanning approach: in order to 
achieve some degrees of flexibility, few 
deliberative systems incorporate an element of 
adaptive replanning. Like in the deliberative 
approach, in the adaptive replanning the main 
role is played by a centralized controller that 
provides to generate a specific flight path for 
each UAV to follow based on the currently 
available information. The UAVs move 
according to the flight paths received, but they 
are also able to gather sensorial information from 
the environment and send it back to the controller 
as it becomes available. As the controller 
receives new information, it may generate new 
flight paths that are in turn broadcast back to the 
UAVs [12][13]; 

• reactive strategies: rather than generate a specific 
flight path that requires live updates, this 
approach aims to generate a so-called “reactive 
strategy” for every UAV. This kind of strategy 
can be imagined as a single decision tree that 
controls the aircraft for the life of the mission. 
The decision tree determines changes in the 
UAV’s heading, based on immediate low-level 
information collected from its sensors [14][15]. 

 
 Richards and colleagues use a team of UAVs that 
has to explore a given area in a cooperative way, relying 
on a decision tree that implements a reactive strategy and 
controls the various aircraft developed through genetic 
programming (GP) methodologies. A more convenient 
approach might consist in the usage of evolutionary neural 
networks (NNs) [16][17], mainly for two reasons. First, it 
is easier to use neural networks instead of GP for this kind 
of task since there is no need to provide the MAVs with a 
predefined set of possible manoeuvres. Robotic aircraft 
endowed with a neural network controller can achieve a 
greater flexibility level, which in turn could allow them to 
employ innovative solutions (i.e., not expected by the 
experimenter) for the task they are carrying out. Second, if 
properly trained, neural networks can guarantee a much 
greater generalisation capability than a decision tree 
evolved through genetic programming. This can allow the 
MAVs evolved within a certain experimental setup to 
perform well in a different scenario 
 Nonetheless, in both GP and NNs cases, a computer 
simulation is required for reasons of cost and time. The 
strategies developed have first to be evaluated within a 
simulated environment, where the (potentially) thousands 
of strategy evaluations required to converge on effective 
solutions do not translate into real economic costs. 
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 In addition to being frequently used to control 
terrestrial robots, neural networks have recently started to 
be considered also in the field of underwater robotics [18]. 
Despite that, they have been only rarely used as controller 
systems for flying robots. The main exception 
encountered so far, reviewing the literature, consists in the 
work of Floreano and colleagues [19]. They employ fully 
autonomous MAV swarms, where each swarm’s member 
acts as a signal repeater, in order to create a reliable 
communication infrastructure between human rescuers 
and base station working into areas hit by natural 
disasters. At the same time, Holland and collaborators 
[20][21] are studying how to employ neural networks as 
controllers for autonomous helicopters. Finally, in 
addition to evolutionary methods, other meaningful 
insights come from the work carried out within the 
Autonomous Flight System Laboratory at the University 
of Washington. Stressing the importance of using 
heterogeneous autonomous systems in place of traditional 
hierarchical structures, Rathbun and Capozzi [22] had 
developed an efficient path planning algorithm for 
situations where the UAVs need to modify their paths in 
order to avoid a number of other aircraft flying in their 
vicinity. 

3 Simulation experiments 
The simulation experiments that will be presented here 
concern the usage of MAV swarms in a distributed control 
perspective. These experiments focus on a particular task, 
specifically a “search and destroy” scenario in the context 
of security and urban counter-terrorism. The main idea is 
that, given the MAVs’ small size and their high level of 
maneuverability, they could be successfully employed on 
counter-terrorism operations to be carried out within 
urban environments. 
 To clarify the scenario, let us imagine being in the 
presence of a potential “danger”, such as a terrorist 
walking along the centre of a modern city3 in order to 
reach the place of an already planned attack. We can 
roughly identify two main categories of possible 
countermoves to a menace of this kind: 
 

• direct approach: blocking the attacker through 
the intervention of a security task-force. It might 
be extremely dangerous if the target is, for 
example, a kamikaze wearing an explosive belt, 
since he could instinctively react to a physical 
aggression by detonating himself; 

• indirect approach: neutralizing the target by 
hitting him from a remote position. This is the 
typical action carried out by a team of snipers. 
The problem with this approach is the difficulty 
involved in passing unnoticed while deploying a 
large amount of snipers around a city. 

                                                
3 The idea is to represent an urban scenario typical of a Western-like city, 
characterized by the presence of many high buildings, grouped in a semi-
regular way, crossed by few huge roads. 

 Using MAV swarms it might be possible to avoid 
the main disadvantages related to both the direct and the 
indirect approaches. The fact that electrical-propelled 
flying robots are able to fly silently and out from the 
typical line of sight of a person allows them to remain 
unnoticed while reaching the target. Furthermore, unlike 
the employment of a sniper team, a MAVs swarm will 
also be able to eventually perform a non-lethal action. The 
outcome of neutralizing the target could in fact be pursued 
through a low-potential detonation, or using some 
chemical substances instead. Those chemical elements 
might be something able to block a device starter or to 
immobilize the target. Another possibility would be to 
drop a flashbang grenade against the target, in order to 
make it temporarily inoffensive and allowing in this way 
the intervention of a task force deployed in the vicinity. 
 The fundamental assumption made in the model 
described here is that the MAVs have to be always aware 
of the target’s position. It should not be an unrealistic 
hypothesis, as we can easily imagine a satellite-based 
system that, while continuously monitoring the 
movements of the target, at the same time shares the 
gathered information related to its position with the 
various MAVs. 
 The specifications of the MAVs employed in these 
simulations (size, speed and autonomy) have been 
inspired by the WASP Block III, produced by the 
American manufacturer Aerovironment. 
 The experiments that will be showed in this paper 
constitute the first steps of an incremental set of 
simulations aimed to gradually move toward a realistic 
model of MAVs swarm cooperative behaviour4. 

3.1 The simulation model 
The environment where the simulation takes place is a 
two-dimensional rectangular area - sized approximately 
630x675 meters - representing a portion of London’s 
Canary Wharf. A swarm is composed of four MAVs, with 
starting positions close to the rectangle’s corners and 
facing the centre of the environment (with the addition of 
a certain amount of random noise from their starting 
orientation). A target is deployed somewhere into the area, 
occupying a random position that is always known to the 
swarm’s members in terms of distance and relative angle. 
 The neural network controlling the MAV behaviour 
is characterized by a simple three-layered feed-forward 
architecture, detailed as follows: 
 

• the input layer consists of four neurons. One of 
them is dedicated to receiving the sensorial input 
related to the distance that separates the MAV 
from the target; the other three are dedicated to 

                                                
4 From a technical point of view, the simulator software has been written 
in C++, using the Qt libraries as graphical framework. The source code, 
the corresponding binary files (compiled both for Windows 32 bit and 
MacOS X 10.4/10.5) and some demos are available on line at the URL: 
http://www.tech.plym.ac.uk/research/SOC/abc/plymav/ 
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encoding the relative angle between the two 
agents; 

• the ten neurons belonging to the hidden layer are 
characterized by a tan-sigmoid activation 
function, with minimum value -1.0, maximum 
1.0 and curve’s slope 1.0; 

• the output layer is composed of two neurons. 
One of them, continuous, is dedicated to the 
MAV steering. Its output value can vary between 
-1.0 and +1.0, according respectively to a 10° left 
and to a 10° right turn. The other neuron is a 
Boolean one: when it turns to 1 the MAV 
detonates (we suppose that, within the possible 
actions introduced in the previous paragraph, the 
MAVs of these simulations attack the target 
through a low-potential detonation). 

Figure 1 - The neural network controller 
achitecture for Simulations A1, A2, A5 and A6 

 
 The MAVs’ controller systems evolve using a 
genetic algorithm, through an evolutionary process lasting 
for 500 generations. An initial population of 100 different 
swarms is created with both connection weights and 
biases randomly assigned in the range -1.0/+1.0. Note 
that, even if each member is endowed with its own neural 
controller, the MAVs belonging to the same swarm share 
the same connection weights and the same biases as well: 
they are, in fact, clones of each other. Each swarm is 
tested four times within four different environments, 
which vary only for the target’s position. Every test starts 
with the swarm’s members deployed in their starting 
places, with the maximum amount of energy available 
(5,000 energy units5). Each MAV sequentially perceives 
its sensorial inputs, elaborates the appropriate behavioural 
response (steering amount and/or detonation) and actuates 
it at each time-step. The movement, which is in the new 
direction after steering has taken place, is 3.14 meters 
long and costs the aircraft 3.01 energy units. The test ends 
when the target has been destroyed by a MAV detonated 
                                                
5 Please consider that this value is much lower than the one that should 
correspond to the real WASP III’s autonomy (it should be approximately 
33,800). The decision to keep this value lower is justified by the long 
computational time required to carry out a simulation when the MAVs 
have the same autonomy as their real counterparts. Sometimes, in fact, 
and especially during the first generations, it might happen that some 
swarm’s members move in the loop, without reacting to the variation in 
sensorial perception, until the autonomy finishes. 

close enough to it (2.2 meters or less) or when there are no 
more aircraft alive. Consider that a MAV – as well as 
detonating - can also die if it moves out of the 
environment boundaries, if it collides with a team-mate or 
if it finishes its autonomy. 
 The fitness formula through which the collective 
performance obtained by each swarm - after the 
conclusion of the four tests - is measured is: 

 fitness = −α + (
β
50

) + (σ * 50) + (φ *5)     (1) 

where: 
 

• α is the average distance between the target and 
the swarm’s member exploded closest to it, 
calculated based on the four tests; 

• β is the average amount of energy retained by the 
MAV detonated closest to the target, calculated 
based on the four tests; 

• σ is the number of tests concluded by the given 
swarm with the elimination of the target; 

• φ is the total number of swarm’s members 
remained alive after the 4 tests (maximum 3 
MAVs x 4 tests = 12 MAVs). 

  
 This formula tends to favour not only those swarms 
able to reach and destroy the target, but also the ones that 
are both quick in accomplishing the task and capable to 
performing it while losing the lowest number of MAVs 
possible. 
 The 20 swarms obtaining the best fitness score are 
selected for reproduction. Each of these swarms creates 5 
copies of itself, which inherit its connection weights set, 
along with the biases related to the hidden and to the 
output layer (the input layer’s neurons have not any bias). 
A certain amount of random mutation (ranging between -
1.0 and +1.0) is added to each inherited weight and bias 
with probability .25. The elitism operator is also applied 
in order to preserve the unmodified reproduction of the 
swarm that - within a given generation – obtains the best 
performance. The best swarm creates five copies of itself, 
but just four of these are subject to random mutations 

3.2 Simulations A: preliminary testing on 
an open environment 

The first set of experiments aims to identify the most 
appropriate encoding for the sensorial input. Eight 
different simulations (A1-A8) have been carried out, 
testing various encodings and the related architectures. 
 
 A1: the angle that separates the MAV from the target 
(dependent on the current MAV’s facing direction) is 
divided into eight different sub-fields. The first includes 
all the angles equal to or greater than 347.5° and lower 
than 22.5°; the second one is related to the angles between 
22.5° (included) and 67.5° (excluded) and so on. These 
sub-fields are numbered progressively, according to a 
Boolean encoding, as shown in Figure 2A. The distance -
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which in the simulated environment used can range from 
0 to 1,165 meters - is discretized into 11 different values, 
according to Table 1. 

Table 1 - Distance encoding for neural network architecture A1 

Distance (meters) Discretized value 
1,165 <= distance < 1,008 0.0 
1,008 <= distance < 896 0.1 
896 <= distance < 784 0.2 
784 <= distance < 672 0.3 
672 <= distance < 560 0.4 
560 <= distance < 448 0.5 
448 <= distance < 336 0.6 
336 <= distance < 224 0.7 
224 <= distance < 112 0.8 
112 <= distance < 2.2 0.9 
2.2 <= distance <= 0 1.0 

 
 A2: the distance-related encoding is the same as A1, 
but the angle that separates the MAV from the target is 
encoded in a different way. It is still segmented in eight 
different parts but these are now numbered through a Gray 
Code encoding instead of a Boolean one (see Figure 2B). 

Figure 2 - The angle encondings for neural network 
architecture A1 (A) and A2 (B) respectively 

 
 A3: the neural network architecture used differs from 
the two previously seen, since it exploits only two 
continuous neurons to encode the angle between the MAV 
and the target. Given an angle between 0° and 360°, the 
first neuron encodes its sin, while the second encode its 
cosine instead. The distance is encoded as in A1 and A2. 
 A4: this neural network architecture uses only a 
single continuous neuron to encode the angle that 
separates the MAV from the target. The angle value 
(0° 360°) is normalized in the range [0;1]. In order to 
avoid a very different encoding between a couple of 
angles both near the front of the MAV, before the 
normalization the angle is rotated to ensure the 0 stays 
behind the MAV. The distance is encoded as in A1, A2 
and A3. 
 A5, A6, A7, A8: all of these architectures encode the 
distance between the MAV and the target in the same 
way. It is not discretized as it was in the first four 
simulations, but simply reduced into the range [0, 1], 
where 0 corresponds to the maximum distance (1,165 
meters) and 1 to the minimum one (0 meters). The angle is 
encoded as follows: 
 

• Simulation A5: encoded as in Simulation A1; 
• Simulation A6: encoded as in Simulation A2; 
• Simulation A7: encoded as in Simulation A3; 

• Simulation A8: encoded as in Simulation A4. 

3.2.1 Simulations A: results 
The results from the first set of simulations, summarized 
in Table 2, clearly identify the A2 as the combination of 
neural network architecture and input encoding that 
generates the best performance. 

Table 2 - Average fitness and percentage of tests concluded with the 
elimination of the target for Simulations A. The values are the average of 

the last 10 generations, based on 5 seeds 

Simulation Average 
fitness 

Percentage of tests 
concluded successfully 

A1 110.49 75.09 
A2 315.18 93.46 
A3 -152.46 11.68 
A4 55.32 58.14 
A5 111.66 75.33 
A6 240.19 88.14 
A7 -142.20 10.89 
A8 -287.03 6.97 

 
 In general it is possible to see how the discretization 
of the sensorial inputs dramatically helps the controllers to 
evolve toward optimal solutions. 

3.3 Simulations B: environment with 
obstacles 

In the second set of simulations we have inserted some 
obstacles into the environment, with the intent of 
representing the biggest buildings present in the urban 
area we are using as a model. For simplicity, the new 
simulated environment is still two-dimensional. The 
buildings represent for the MAVs a kind of “no-fly zone”: 
if they try to enter these areas, they will be immediately 
destroyed. In other words, we are assuming that these 
buildings are too high to allow the MAVs to fly over 
them, so their only chance to avoid these obstacles is 
through circumnavigation. 
  

Figure 3. The environment where simulations B take place, with the 
main buildings mapped (in red) as no-fly zones. The highlighted zone, in 

the centre of the scenario, is what we define as the “enclosed area” 
[The background image has been taken from Google Earth©] 
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 According to Figure 3, 19 building/obstacles have 
been mapped into the environment. Their shape is always 
rectangular and the differences between them are just 
related to their size. These obstacles correspond to the 
tallest buildings present in Canary Wharf. 
 In order to evolve an obstacle-avoidance capability, 
the MAVs have to be equipped with a sensor (or a set of 
sensors) able to detect the presence of any obstructions. 
We use an ultra-sonic sensor capable of detecting the 
presence of an object, no matter what kind of object it is 
(just a surface that can reflect the signal is enough) 
situated in front of the MAV - along a straight line - until 
25 meters distance. In the context of our simulations, the 
obstacles that the aircraft are able to perceive through this 
sensor consist of: a building, the target and another MAV. 
 Starting from the A2 architecture, we have added 
one neuron to the input layer and two to the hidden layer. 
The behaviour of the new input neuron is straightforward, 
as it simply encodes the distance from the nearest obstacle 
perceived by the MAV, according to Table 3. 

Table 3. Econding related to the ultra-sonic sensor perception 

Distance (meters) Discretized value 
1165 <= distance < 33.6 0.0 
33.6 <= distance < 30.24  0.1 
30.24 <= distance < 26.88 0.2 
26.88 <= distance < 23.52 0.3 
23.52 <= distance < 20.16 0.4 
20.16 <= distance < 16.8 0.5 
16.8 <= distance < 13.44 0.6 
13.44 <= distance < 10.08 0.7 
10.08 <= distance < 6.72 0.8 
6.72 <= distance < 3.36 0.9 
3.36 <= distance <= 0 1.0 

 
 One of the main difficulties of this task arises from 
the fact that, using a sensor of this kind, the MAVs can 
simply detect a generic obstacle in front of them without 
the knowledge of what kind of obstacle it is. They are not 
aware, in fact, of the real nature of the obstacle they are 
facing, i.e. if it is, for example, a building or the target 
they are looking for instead. Therefore they need to make 
an assumption about what the perceived obstacle is, based 
on the others sensorial information gathered. In other 
words, they have to identify the target matching the 
information provided by the ultrasonic sensor with the 
distance from the target that they receive in turn from 
another sensor. 
 From a technical perspective the simulation has been 
subject to only few minor changes with respect to the A-
series. First of all, the fitness formula (1) has been 
modified and now - in order to assign a strong importance 
to the obstacle-avoidance issue - it stresses the factor φ 
more than before: 

 fitness = −α + (
β
50

) + (σ *50) + (φ *10)    (2) 

 To achieve a good generalization ability, the MAVs 
no longer start from the usual positions close to the 
environment’s corners, but from a semi-random starting 

point instead. The distance from the boundaries is fixed 
(one MAV per side of the environment), while the exact 
starting position is randomly assigned before every test. 
Furthermore, during the four tests, the target is deployed 
two times in a random position into an “enclosed area” at 
the centre of the environment, and the other two times in a 
random position outside the enclosed area. 
 In order to make the navigation task easier, the 
MAVs’ turning radius has been increased from +/-10° to 
+/-20°. This modification has been partially mitigated by a 
second change: now - during each step - the MAVs no 
longer make a movement 3.14 meters long, but a 
movement of 2.24 meters’ length instead. The amount of 
energy spent for a single step has consequentially been 
reduced from 3.01 to 2.14. 
 Also, since the new behaviour requested to the 
MAVs is more complicated than the previous one, the 
evolution length has been increased from 500 to 2,000 
generations. 

Figure 4. Ultra-sonic sensors set up for Simulations B 
(A: architecture B1; B: B2; C:B3; D:B4) 

 
 

The experimental setup described here corresponds to 
Simulation B1. In order to pinpoint the most efficient 
configuration able to evolve obstacle-avoidance 
capability, three other simulations have been carried out 
with different sensors set up. As detailed in Figure 4, 
simulations B2, B3 and B4 all use three ultra-sonic 
sensors (with the respective input neurons) instead of only 
one. The corresponding neural network architectures are 
slightly different with respect to the one used in B1, since 
a larger amount of hidden neurons (15 instead than 12) 
has been inserted on them. 

3.3.1 Simulations B: results 
The results coming out from the second set of simulations 
need to be analyzed thoroughly. 
Table 4. Average fitness, percentage of tests concluded successfully and 
average minimum distance from the target for Simulations B. The values 

are the average of the last 10 generations, based on 5 seeds 

Sim. Average 
fitness 

Percentage of 
tests succeeded 

Minimum distance 
from the target 

B1 51.09 62.13 0.67 
B2 257.27 87.07 0.14 
B3 238.09 84.5 0.44 
B4 257.62 87.18 0.54 
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What is striking is that Simulation B1 is the one which 
performs worst in the overall group. This outcome was to 
some extent expected, since the presence of only one 
ultra-sonic sensor does not allow the MAVs to know in 
which direction to turn when facing an obstacle. Aircraft 
evolved in this experimental setup are able to reach and 
neutralize the target only 62% of the times, while, on 
average, one aircraft per test crashes against a building. 
 Simulations B2, B3 and B4 look much more 
promising. All the members of this subsection score a 
good result in terms of percentage of tests successfully 
concluded (respectively 87%, 84% and 87%). The relative 
bad performance of B3 is due to the fact that the obstacle-
avoidance ability of the MAVs evolved in this setup is 
less effective with respect to Simulations B2 and B4. To 
clarify this point, consider that on the “average swarm” of 
the population evolved in Simulation B3, there is (again, 
on average) one MAV that crashes against a building 
every three tests, versus one each four tests for Simulation 
B3 and one each five tests for Simulation B4). 
Furthermore, the MAVs - particularly when enclosed 
within restricted areas surrounded by obstacles - can 
sometimes get stuck in a kind of loop. Basically they 
continue to turn on themselves, until their available 
energy goes out. This condition happens much more 
frequently in Simulation B3 than in Simulations B2 and 
B4. 
Figure 5. The end-test condition for the average swarms of Simulation B4 

 
 Looking at Table 4, the results obtained by B2 and 
B4 appear very similar. The last column - “Minimum 
distance from the target” - could look like a bad score for 
Simulation B4, but we have to consider that, in order to 
destroy the target, a MAV needs to detonate within a two-
pixel distance from it. It does not make a big difference 
having an average minimum distance from the target, for 
the swarm’s member detonated closest to it, of 0.1394 or 
0.5426 instead. 
 Observing the data contained in Table 5, related to 
the conditions of the “average swarm” at the end of the 
“average test”, the advantages of Simulation B4 become 
evident. With respect to Simulation B2, in fact, there are a 
wider number of MAVs alive (2.3 vs. 2.17), due to fewer 
detonations (1.03 vs. 1.05) and to a better obstacle-
avoidance capability (on average, 0.22 MAVs crash 

against a building vs. 0.32). The only pitfall is the average 
amount of MAVs that finish their energy during the test: 
0.23 for B4 vs. 0.18 for B2. 

Table 5. End-test conditions for the Simulations B's "average swarm" 

Sim. Alive Detonated 
Crashed 
against a 
building 

Out of 
energy 

Other 
death 

B1 1.18 1.22 0.99 0.32 0.29 
B2 2.17 1.05 0.32 0.18 0.28 
B3 2.2 1.03 0.28 0.27 0.22 
B4 2.3 1.03 0.22 0.23 0.22 

 
 Simulation B4 can be anyhow declared the best 
between all the “Family B” simulations carried out. 

4 Conclusion and further 
developments 

In the simulations described here we have identified the 
minimum set of sensors, with the respective encodings, 
needed to evolve neural network controllers for 
autonomous MAV swarms able to navigate along an 
unknown environment, with or without obstacles, and to 
perform a pre-defined action when a certain target has 
been reached. This work constitutes a baseline 
framework that will act as a solid starting point for the 
future studies regarding the employment of MAV swarms 
in different kinds of tasks. Particularly, the main research 
directions that will be followed during the next years are 
two. 
 Sociality and cooperative tasks. The task presented 
here, even if conducted by a swarm composed of many 
members, could not be fully classified as a cooperative 
task. The MAVs, in fact, act individually, interacting with 
the teammates only through their ultra-sonic perception 
when it happens that two or more of them are flying over 
the same area. The next step will be to make the task a 
social one, e.g. requiring a coordinated attack (two or 
more MAVs that detonate simultaneously) in order to 
neutralize the target. To successfully accomplish such a 
kind of task, the swarm’s members need at least to know 
the position of their teammates. 
 Evolution of communication. From the previous 
point easily arise the awareness that the usage of explicit 
forms of communications between the MAVs could 
dramatically improve their performance in accomplishing 
a cooperative task. Most MAS models that have 
considered communication typically refer to implicit 
forms of communication, such as visual cues in predator 
models [8] and stigmergy communication in colonies [7], 
or to the technical aspects of agent communication 
protocols [5]. Instead, the use of explicit forms of 
communication (e.g. symbolic, language-like systems) can 
be crucial in tasks requiring higher levels of cognitive 
capabilities, such as planning and decision making, and 
for the integration of language and cognitive capabilities 
[23][24][25]. By explicit forms of communication we 
mean the use of symbolic lexicons in which it is possible 
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to identify a clear symbol/meaning relationship grounded 
on the agents’ collaborative task properties and processes. 
New studies on the role of explicit communication in 
MAS have many theoretical and technological 
implications. In particular, agents that are allowed to 
communicate explicitly during the execution of 
collaborative tasks might benefit from the exchange of 
information regarding properties of the task being 
processed. Such explicit communication systems do not 
have to be defined a priory by the human designer, but can 
autonomously emerge from social interaction between 
agents [26][27]. 
 At the same time, the simulator will gradually evolve 
toward a more realistic three-dimensional model, able to 
take into account the physical properties of the actors 
involved in the simulations. This, in fact, will constitute 
the last step required in order to think of the usage of 
MAVs, endowed with genetically evolved neural network 
controllers, within real applicative scenarios. 

Acknowledgments 
Effort sponsored by the Air Force Office of Scientific Research, 
Air Force Material Command, USAF, under grant number 
FA8655-07-1-3075.  The U.S. Government is authorized to 
reproduce and distribute reprints for Government purpose 
notwithstanding any copyright notation thereon. 
The authors would also thank euCognition.org for the support 
provided (Network Action NA097-3). 

Disclaimer 
The views and conclusions contained herein are those of the 
authors and should not be interpreted as necessarily representing 
the official policies or endorsements, either expressed or 
implied, of the Air Force Office of Scientific Research or the 
U.S. Government. 

References 
[1] C.W. Reynolds, Flocks, Herds, and Schools: A Distributed 
Behavioral Model, Computer Graphics, Vol. 21-4 (SIGGRAPH '87 
Conference Proceedings), pp. 25-34, 1987. 
[2] G. Nitschke, Emergence of Cooperation: State of the Art, 
Artificial Life, Vol. 11-3, pp. 367-396, 2005. 
[3] G. Baldassarre, D. Parisi and S. Nolfi, Distributed 
Coordination of Simulated Robots Based on Self-Organization, 
Artificial Life, Vol. 12-3, pp. 289-311, 2006. 
[4] J.M. Eklund, J.S. Sprinkle and S. Sastry, Template Based 
Planning and Distributed Control for Networks of Unmanned 
Underwater Vehicles, 44th IEEE Conference on Decision and 
Control and European Control Conference (CDC-ECC’05), 2005. 
[5] R. Weiss (Ed.), Multiagent Systems: A Modern Approach to 
Distributed Artificial Intelligence, MIT Press, 2000. 
[6] M. Koes, I. Nourbakhsh and K. Sycara (2006) Constraint 
Optimization Coordination Architecture for Search and Rescue 
robotics, Proceedings of the IEEE International Conference on 
Robotics and Automation (ICRA) 2006, pp. 3977-3982, 2006; 
[7] V. Trianni and M. Dorigo, Self-organization and 
Communication in Groups of Simulated and Physical Robots, 
Biological Cybernetics, Vol. 95-3, pp. 213-231, 2006. 
[8] A.M. Barry and H. Dalrymple-Smith, Visual Communication 
and Social Structure. The Group Predations of Lions, Proceedings 

of International Workshop on the Modelling Natural Action 
Selection (MNAS05), 2005. 
[9] S.A. Cambone, K.J. Krieg, P. Pace and L. Wells II, 
Unmanned Aircraft Systems Roadmap 2005-2030, 
http://uav.navair.navy.mil/roadmap05/USRoadmapAug%2005.pdf.  
[10] M.D. Richards, D. Whitley and J.R. Beveridge, Evolving 
Cooperative Strategies for UAV Teams. Genetic and Evolutionary 
Computation Conference (GECCO 2005), ACM Press, 2005. 
[11] V. Ablavsky, D. Stouch and M. Snorrason, Search Path 
Optimization for UAVs using Stochastic Sampling with Abstract 
Pattern Descriptors, Proceedings of the AIAA Guidance Navigation 
and Control Conference, 2003. 
[12] S. Rathinam, M. Zennaro, T. Mak and R. Sengupta, An 
Architecture for UAV Team Control, IAV2004: Fifth IFAC 
symposium on intelligent autonomous vehicles, 2004. 
[13] P. Vincent and I. Rubin, A Framework and Analysis for 
Cooperative Search using UAV Swarms, Proceedings of the 2004 
ACM symposium on Applied computing, pp. 79-86, 2004. 
[14] F.W. Moore, A Methodology for Missile Countermeasures 
Optimization under Uncertainty, Evolutionary Computation, Vol. 
10-2, pp. 129-149, 2002. 
[15] G.J. Barlow, C.K. Oh and E. Grant, Incremental Evolution of 
Autonomous Controllers for Unmanned Aerial Vehicles using Multi-
Objective Genetic Programming, Proceedings of the 2004 IEEE 
Conference on Cybernetics and Intelligent Systems, 2004. 
[16] S. Nolfi and D. Floreano, Evolutionary Robotics. The Biology, 
Intelligence, and Technology of Self-Organizing Machines, MIT 
Press, 2004. 
[17] M. Mitchell, An Introduction to Genetic Algorithms, MIT 
Press, 1998. 
[18] V.S. Kodogiannis, Neuro-Control of Unmanned Underwater 
Vehicles, International Journal of Systems Science, Vol. 37-3, pp. 
149-162, 2006. 
[19] D. Floreano, S. Hauert, S. Leven and J.-C. Zufferey, 
Evolutionary Swarms of Flying Robots, International Symposium on 
Flying Insects and Robots, pp. 35-36, 2007. 
[20] O. Holland, J. Woods, R. De Nardi and A. Clark, Beyond 
Swarm Intelligence: the Ultraswarm, IEEE Swarm Intelligence 
Symposium (SIS2005), 2005. 
[21] R. De Nardi, O. Holland, J. Woods and A. Clark, SwarMAV: 
A Swarm of Miniature Aerial Vehicles, 21st Bristol UAV Systems 
Conference, 2006. 
[22] D. Rathbun and B. Capozzi, An Evolution Based Path 
Planning Algorithm for Autonomous Motion of a UAV through 
Uncertain Environments, Proceedings of the AIAA Digital Avionics 
Systems Conference, 2002. 
[23] L.I. Perlovsky, Integrating Language and Cognition, IEEE 
Connections, Vol. 2-2, pp. 8-13, 2004. 
[24] L.I. Perlovsky, Neural Networks, Fuzzy Models and Dynamic 
Logic, Chapter in R. Kohler and A. Mehler (Ed.), Aspect of 
Automatic Text Analysis (Festschrift in Honor of Burghard Rieger), 
Springer, Germany, pp. 363-383, 2006. 
[25] V. Tikhanoff, J.F. Fontanari, A. Cangelosi and L.I. Perlovsky, 
Language and Cognition Integration through Modeling Field 
Theory: Category Formation for Symbol Grounding, Proceedings of 
ICANN06 International Conference on Artificial Neural Networks, 
2006. 
[26] A. Cangelosi and D. Parisi, Simulating the Evolution of 
Language, Springer-Verlag, 2001. 
[27] D. Marocco and S. Nolfi, Emergence of Communication in 
Embodied Agents Evolved for the Ability to Solve a Collective 
Navigation Problem, Connection Sciences, (in press). 

1050


