
Distributed Control in Multi-Agent Systems:
A Preliminary Model of Autonomous MAV Swarms

Fabio Ruini

Adaptive Behaviour and Cognition Research Group
School of Computing, Communications and Electronics

University of Plymouth, U.K.
fabio.ruini@plymouth.ac.uk

Angelo Cangelosi
Adaptive Behaviour and Cognition Research Group

School of Computing, Communications and Electronics
University of Plymouth, U.K.
a.cangelosi@plymouth.ac.uk

Abstract - This article focuses on the use of Multi-Agent
Systems for modelling of Micro-unmanned Aerial
Vehicles (MAVs) in a distributed control task. The task
regards a search and destroy scenario in the context of
security and urban counter-terrorism. In the
simulations developed, a swarm composed of four
autonomous flying robots, driven by an embodied neural
network controller, has to approach a target deployed
somewhere within the given environment. When close
enough to the target, one of the aircraft needs to carry
out a detonation in order to neutralize it. The controllers
used by the MAVs evolve through a genetic algorithm.
The preliminary results presented here demonstrate how
the adaptive evolutionary approach can be successfully
employed to develop controllers of this kind. The MAV
swarms evolved in this way are in fact able to reach and
hit the target, navigating through an obstacle-full
environment. Further works on this model will focus on
the development of a 3D physical simulator, in order to
move towards the usage of MAVs with neural network
controllers in real applicative urban scenarios.

Keywords: MAVs, multi-agent systems, autonomous
robotics, obstacle-avoidance, neural networks, genetic
algorithms, embodied cognition.

1 Distributed control in Multi-Agent
Systems (MAS)

Distributed control, particularly when it requires a certain
level of coordination/cooperation [1][2][3], is a notably
interesting problem from both a technological and
scientific perspective. Compared to centralised control
where a central controller (e.g. human operator or
airplane’s “leader” agent) is responsible for (pre)planning,
task-assignment and supervision of the coordination task,
in distributed control systems intelligent autonomous (or
semi-autonomous) agents are capable of sensing, acting,
cognition and communication and together contribute to
the task solution. These network-centric systems only
require partial interaction with other agents, and may
necessitate simpler architectures and individual resource
requirements as knowledge is distributed in the
population.

 The significant advantages of this approach are that
the system is more robust, adaptive and fault tolerant since
there is no critical reliance on any specific individual, and
that decentralization results in increased reliability, safety
and speed of response [3][4]. In addition, distributed
approaches have the benefit of not requiring the full pre-
planning of the cooperative strategy. Adaptive solutions
can emerge at runtime through the interaction between
autonomous individuals and from the task and
environment requirements, which might not be fully
accessible at the beginning of the problem.
 Studies on distributed control greatly benefit from
the utilization of Multi-Agent Systems (MAS), since they
provide a platform for simulation and testing of various
hypotheses based on the principle of distributed (artificial)
intelligence [5]. Distributed control MAS approaches have
been used in various domains, such as unmanned air,
terrestrial/underwater vehicles, search and rescue
scenarios, collective robotics, social cognition etc. For
example, Sastry and colleagues [4] have focused on
coordination and distributed control in unmanned
underwater vehicles; Sykara and collaborators [6] have
concentrated their attention on the study of hybrid rescue
group systems based on humans, software agents, and
autonomous robots. What they propose are coordination
architectures capable of quickly finding optimal solutions
to the combined problems of task allocation, scheduling,
and path-planning subject to system constraints. In the
SWARM-BOT project [3][7] groups of robots evolve a
cooperative strategy for exploratory tasks. In such a study
distributed coordination implies that the characteristics of
the group’s behaviour (e.g. individual sensorimotor
strategies, the roles played by the different robots, the
synchronization problems raised by their interactions) are
not managed centrally by one or few “leaders” but are the
result of self-organizing processes instead. Examples of
these processes are “positive feedback” (if each individual
of a group follows a rule of the type “do what the majority
does”, the individuals’ behaviours will tend to become
homogeneous) or “consumption of building blocks” (e.g.
if the number of individuals forming a group is limited,
the process of convergence towards the same behaviour
caused by a positive feedback mechanism will necessarily
slow down and then stop). Finally, various MAS models
of social cognition have been proposed, such as those
modelling animal collaborative tasks such as in ant

1043

colonies (which have inspired the SWARM-BOT
application) and predator group behaviour [8].
 The goal of this paper is to introduce a new
methodology, based on MAS, to develop autonomous
controller systems for unmanned aerial vehicles (UAVs).
We will focus on a particular category of UAVs
characterised by their very small size, the so-called Micro-
unmanned Aerial Vehicles (MAVs). The interest in such a
model arise from the fact that, given their specifications,
swarms composed by many MAVs could be successfully
employed for counter-terrorism operations to be carried
out within urban crowded environments.

2 Autonomous UAVs/MAVs path-
planning

Typically, the UAVs1 used nowadays in real applicative
scenarios are dynamically remote controlled (think for
instance about the famous Predator, which is currently
widely employed in the main warfare environments) by a
human crew staying in a remote position. Many UAVs, at
the same time, also have their own guidance systems, via
which they can fly autonomously. The limitation is that
usually these guidance systems are slightly similar to
automatic pilots used within the civilian aviation domain
as they simply provide a means of keeping the UAVs
following a given pre-planned route.
 During the last few years we have noticed an
increasing interest in developing intelligent autonomous
UAVs’ controller systems. The focusing toward
autonomous guidance systems is not only an economical
matter, although the use of autonomous aircraft instead of
the usual combination “manned airplane plus human
pilot” would allow to save the enormous amount of
money normally required for pilot training, skills
upgrading, and so on. Computer software can frequently
outperform humans in carrying out many different tasks,
both in terms of reliability (for example, consider the
“dull” factor which Cambone and colleagues refer to [9])
and accuracy (computer software is more accurate than a
human pilot to perform an already planned manoeuvre
and, most important of all, it is able to perform with the
shortest reaction time possible). For tasks where more
than a single UAV has to be employed, for example
because a certain level of cooperation is required, the
magnitude of the problem increases accordingly.
 According to Richards and colleagues [10] current
approaches for autonomous cooperative UAV control can
be separated into the following strategies2:

• deliberative approach: focused on developing a
specific flight path for each UAV to follow. Such
flight paths are rigid and they cannot be altered

1 Within this section we will use the term UAV in a generic way,
meaning any possible kind of unmanned aerial vehicle, including MAVs.
2 In reality, Richards, Whitley and Beveridge classify these approaches in
four different groups. For simplicity purposes, we limit our analysis to
only three of these, excluding the “behaviour based controller systems”.

even in the event that new information is
discovered. In other words, the entire scenario is
assumed to be already known. This approach
could be successfully employed for civilian flight
planning, but it simply results in being unusable
in a military perspective. An example of this
approach is in the work by Ablavsky [11];

• adaptive replanning approach: in order to
achieve some degrees of flexibility, few
deliberative systems incorporate an element of
adaptive replanning. Like in the deliberative
approach, in the adaptive replanning the main
role is played by a centralized controller that
provides to generate a specific flight path for
each UAV to follow based on the currently
available information. The UAVs move
according to the flight paths received, but they
are also able to gather sensorial information from
the environment and send it back to the controller
as it becomes available. As the controller
receives new information, it may generate new
flight paths that are in turn broadcast back to the
UAVs [12][13];

• reactive strategies: rather than generate a specific
flight path that requires live updates, this
approach aims to generate a so-called “reactive
strategy” for every UAV. This kind of strategy
can be imagined as a single decision tree that
controls the aircraft for the life of the mission.
The decision tree determines changes in the
UAV’s heading, based on immediate low-level
information collected from its sensors [14][15].

 Richards and colleagues use a team of UAVs that
has to explore a given area in a cooperative way, relying
on a decision tree that implements a reactive strategy and
controls the various aircraft developed through genetic
programming (GP) methodologies. A more convenient
approach might consist in the usage of evolutionary neural
networks (NNs) [16][17], mainly for two reasons. First, it
is easier to use neural networks instead of GP for this kind
of task since there is no need to provide the MAVs with a
predefined set of possible manoeuvres. Robotic aircraft
endowed with a neural network controller can achieve a
greater flexibility level, which in turn could allow them to
employ innovative solutions (i.e., not expected by the
experimenter) for the task they are carrying out. Second, if
properly trained, neural networks can guarantee a much
greater generalisation capability than a decision tree
evolved through genetic programming. This can allow the
MAVs evolved within a certain experimental setup to
perform well in a different scenario
 Nonetheless, in both GP and NNs cases, a computer
simulation is required for reasons of cost and time. The
strategies developed have first to be evaluated within a
simulated environment, where the (potentially) thousands
of strategy evaluations required to converge on effective
solutions do not translate into real economic costs.

1044

 In addition to being frequently used to control
terrestrial robots, neural networks have recently started to
be considered also in the field of underwater robotics [18].
Despite that, they have been only rarely used as controller
systems for flying robots. The main exception
encountered so far, reviewing the literature, consists in the
work of Floreano and colleagues [19]. They employ fully
autonomous MAV swarms, where each swarm’s member
acts as a signal repeater, in order to create a reliable
communication infrastructure between human rescuers
and base station working into areas hit by natural
disasters. At the same time, Holland and collaborators
[20][21] are studying how to employ neural networks as
controllers for autonomous helicopters. Finally, in
addition to evolutionary methods, other meaningful
insights come from the work carried out within the
Autonomous Flight System Laboratory at the University
of Washington. Stressing the importance of using
heterogeneous autonomous systems in place of traditional
hierarchical structures, Rathbun and Capozzi [22] had
developed an efficient path planning algorithm for
situations where the UAVs need to modify their paths in
order to avoid a number of other aircraft flying in their
vicinity.

3 Simulation experiments
The simulation experiments that will be presented here
concern the usage of MAV swarms in a distributed control
perspective. These experiments focus on a particular task,
specifically a “search and destroy” scenario in the context
of security and urban counter-terrorism. The main idea is
that, given the MAVs’ small size and their high level of
maneuverability, they could be successfully employed on
counter-terrorism operations to be carried out within
urban environments.
 To clarify the scenario, let us imagine being in the
presence of a potential “danger”, such as a terrorist
walking along the centre of a modern city3 in order to
reach the place of an already planned attack. We can
roughly identify two main categories of possible
countermoves to a menace of this kind:

• direct approach: blocking the attacker through
the intervention of a security task-force. It might
be extremely dangerous if the target is, for
example, a kamikaze wearing an explosive belt,
since he could instinctively react to a physical
aggression by detonating himself;

• indirect approach: neutralizing the target by
hitting him from a remote position. This is the
typical action carried out by a team of snipers.
The problem with this approach is the difficulty
involved in passing unnoticed while deploying a
large amount of snipers around a city.

3 The idea is to represent an urban scenario typical of a Western-like city,
characterized by the presence of many high buildings, grouped in a semi-
regular way, crossed by few huge roads.

 Using MAV swarms it might be possible to avoid
the main disadvantages related to both the direct and the
indirect approaches. The fact that electrical-propelled
flying robots are able to fly silently and out from the
typical line of sight of a person allows them to remain
unnoticed while reaching the target. Furthermore, unlike
the employment of a sniper team, a MAVs swarm will
also be able to eventually perform a non-lethal action. The
outcome of neutralizing the target could in fact be pursued
through a low-potential detonation, or using some
chemical substances instead. Those chemical elements
might be something able to block a device starter or to
immobilize the target. Another possibility would be to
drop a flashbang grenade against the target, in order to
make it temporarily inoffensive and allowing in this way
the intervention of a task force deployed in the vicinity.
 The fundamental assumption made in the model
described here is that the MAVs have to be always aware
of the target’s position. It should not be an unrealistic
hypothesis, as we can easily imagine a satellite-based
system that, while continuously monitoring the
movements of the target, at the same time shares the
gathered information related to its position with the
various MAVs.
 The specifications of the MAVs employed in these
simulations (size, speed and autonomy) have been
inspired by the WASP Block III, produced by the
American manufacturer Aerovironment.
 The experiments that will be showed in this paper
constitute the first steps of an incremental set of
simulations aimed to gradually move toward a realistic
model of MAVs swarm cooperative behaviour4.

3.1 The simulation model
The environment where the simulation takes place is a
two-dimensional rectangular area - sized approximately
630x675 meters - representing a portion of London’s
Canary Wharf. A swarm is composed of four MAVs, with
starting positions close to the rectangle’s corners and
facing the centre of the environment (with the addition of
a certain amount of random noise from their starting
orientation). A target is deployed somewhere into the area,
occupying a random position that is always known to the
swarm’s members in terms of distance and relative angle.
 The neural network controlling the MAV behaviour
is characterized by a simple three-layered feed-forward
architecture, detailed as follows:

• the input layer consists of four neurons. One of
them is dedicated to receiving the sensorial input
related to the distance that separates the MAV
from the target; the other three are dedicated to

4 From a technical point of view, the simulator software has been written
in C++, using the Qt libraries as graphical framework. The source code,
the corresponding binary files (compiled both for Windows 32 bit and
MacOS X 10.4/10.5) and some demos are available on line at the URL:
http://www.tech.plym.ac.uk/research/SOC/abc/plymav/

1045

encoding the relative angle between the two
agents;

• the ten neurons belonging to the hidden layer are
characterized by a tan-sigmoid activation
function, with minimum value -1.0, maximum
1.0 and curve’s slope 1.0;

• the output layer is composed of two neurons.
One of them, continuous, is dedicated to the
MAV steering. Its output value can vary between
-1.0 and +1.0, according respectively to a 10° left
and to a 10° right turn. The other neuron is a
Boolean one: when it turns to 1 the MAV
detonates (we suppose that, within the possible
actions introduced in the previous paragraph, the
MAVs of these simulations attack the target
through a low-potential detonation).

Figure 1 - The neural network controller
achitecture for Simulations A1, A2, A5 and A6

 The MAVs’ controller systems evolve using a
genetic algorithm, through an evolutionary process lasting
for 500 generations. An initial population of 100 different
swarms is created with both connection weights and
biases randomly assigned in the range -1.0/+1.0. Note
that, even if each member is endowed with its own neural
controller, the MAVs belonging to the same swarm share
the same connection weights and the same biases as well:
they are, in fact, clones of each other. Each swarm is
tested four times within four different environments,
which vary only for the target’s position. Every test starts
with the swarm’s members deployed in their starting
places, with the maximum amount of energy available
(5,000 energy units5). Each MAV sequentially perceives
its sensorial inputs, elaborates the appropriate behavioural
response (steering amount and/or detonation) and actuates
it at each time-step. The movement, which is in the new
direction after steering has taken place, is 3.14 meters
long and costs the aircraft 3.01 energy units. The test ends
when the target has been destroyed by a MAV detonated

5 Please consider that this value is much lower than the one that should
correspond to the real WASP III’s autonomy (it should be approximately
33,800). The decision to keep this value lower is justified by the long
computational time required to carry out a simulation when the MAVs
have the same autonomy as their real counterparts. Sometimes, in fact,
and especially during the first generations, it might happen that some
swarm’s members move in the loop, without reacting to the variation in
sensorial perception, until the autonomy finishes.

close enough to it (2.2 meters or less) or when there are no
more aircraft alive. Consider that a MAV – as well as
detonating - can also die if it moves out of the
environment boundaries, if it collides with a team-mate or
if it finishes its autonomy.
 The fitness formula through which the collective
performance obtained by each swarm - after the
conclusion of the four tests - is measured is:

 fitness = −α + (
β
50

) + (σ * 50) + (φ *5) (1)

where:

• α is the average distance between the target and
the swarm’s member exploded closest to it,
calculated based on the four tests;

• β is the average amount of energy retained by the
MAV detonated closest to the target, calculated
based on the four tests;

• σ is the number of tests concluded by the given
swarm with the elimination of the target;

• φ is the total number of swarm’s members
remained alive after the 4 tests (maximum 3
MAVs x 4 tests = 12 MAVs).

 This formula tends to favour not only those swarms
able to reach and destroy the target, but also the ones that
are both quick in accomplishing the task and capable to
performing it while losing the lowest number of MAVs
possible.
 The 20 swarms obtaining the best fitness score are
selected for reproduction. Each of these swarms creates 5
copies of itself, which inherit its connection weights set,
along with the biases related to the hidden and to the
output layer (the input layer’s neurons have not any bias).
A certain amount of random mutation (ranging between -
1.0 and +1.0) is added to each inherited weight and bias
with probability .25. The elitism operator is also applied
in order to preserve the unmodified reproduction of the
swarm that - within a given generation – obtains the best
performance. The best swarm creates five copies of itself,
but just four of these are subject to random mutations

3.2 Simulations A: preliminary testing on
an open environment

The first set of experiments aims to identify the most
appropriate encoding for the sensorial input. Eight
different simulations (A1-A8) have been carried out,
testing various encodings and the related architectures.

 A1: the angle that separates the MAV from the target
(dependent on the current MAV’s facing direction) is
divided into eight different sub-fields. The first includes
all the angles equal to or greater than 347.5° and lower
than 22.5°; the second one is related to the angles between
22.5° (included) and 67.5° (excluded) and so on. These
sub-fields are numbered progressively, according to a
Boolean encoding, as shown in Figure 2A. The distance -

1046

which in the simulated environment used can range from
0 to 1,165 meters - is discretized into 11 different values,
according to Table 1.

Table 1 - Distance encoding for neural network architecture A1

Distance (meters) Discretized value
1,165 <= distance < 1,008 0.0
1,008 <= distance < 896 0.1
896 <= distance < 784 0.2
784 <= distance < 672 0.3
672 <= distance < 560 0.4
560 <= distance < 448 0.5
448 <= distance < 336 0.6
336 <= distance < 224 0.7
224 <= distance < 112 0.8
112 <= distance < 2.2 0.9
2.2 <= distance <= 0 1.0

 A2: the distance-related encoding is the same as A1,
but the angle that separates the MAV from the target is
encoded in a different way. It is still segmented in eight
different parts but these are now numbered through a Gray
Code encoding instead of a Boolean one (see Figure 2B).

Figure 2 - The angle encondings for neural network
architecture A1 (A) and A2 (B) respectively

 A3: the neural network architecture used differs from
the two previously seen, since it exploits only two
continuous neurons to encode the angle between the MAV
and the target. Given an angle between 0° and 360°, the
first neuron encodes its sin, while the second encode its
cosine instead. The distance is encoded as in A1 and A2.
 A4: this neural network architecture uses only a
single continuous neuron to encode the angle that
separates the MAV from the target. The angle value
(0° 360°) is normalized in the range [0;1]. In order to
avoid a very different encoding between a couple of
angles both near the front of the MAV, before the
normalization the angle is rotated to ensure the 0 stays
behind the MAV. The distance is encoded as in A1, A2
and A3.
 A5, A6, A7, A8: all of these architectures encode the
distance between the MAV and the target in the same
way. It is not discretized as it was in the first four
simulations, but simply reduced into the range [0, 1],
where 0 corresponds to the maximum distance (1,165
meters) and 1 to the minimum one (0 meters). The angle is
encoded as follows:

• Simulation A5: encoded as in Simulation A1;
• Simulation A6: encoded as in Simulation A2;
• Simulation A7: encoded as in Simulation A3;

• Simulation A8: encoded as in Simulation A4.

3.2.1 Simulations A: results
The results from the first set of simulations, summarized
in Table 2, clearly identify the A2 as the combination of
neural network architecture and input encoding that
generates the best performance.

Table 2 - Average fitness and percentage of tests concluded with the
elimination of the target for Simulations A. The values are the average of

the last 10 generations, based on 5 seeds

Simulation Average
fitness

Percentage of tests
concluded successfully

A1 110.49 75.09
A2 315.18 93.46
A3 -152.46 11.68
A4 55.32 58.14
A5 111.66 75.33
A6 240.19 88.14
A7 -142.20 10.89
A8 -287.03 6.97

 In general it is possible to see how the discretization
of the sensorial inputs dramatically helps the controllers to
evolve toward optimal solutions.

3.3 Simulations B: environment with
obstacles

In the second set of simulations we have inserted some
obstacles into the environment, with the intent of
representing the biggest buildings present in the urban
area we are using as a model. For simplicity, the new
simulated environment is still two-dimensional. The
buildings represent for the MAVs a kind of “no-fly zone”:
if they try to enter these areas, they will be immediately
destroyed. In other words, we are assuming that these
buildings are too high to allow the MAVs to fly over
them, so their only chance to avoid these obstacles is
through circumnavigation.

Figure 3. The environment where simulations B take place, with the
main buildings mapped (in red) as no-fly zones. The highlighted zone, in

the centre of the scenario, is what we define as the “enclosed area”
[The background image has been taken from Google Earth©]

1047

 According to Figure 3, 19 building/obstacles have
been mapped into the environment. Their shape is always
rectangular and the differences between them are just
related to their size. These obstacles correspond to the
tallest buildings present in Canary Wharf.
 In order to evolve an obstacle-avoidance capability,
the MAVs have to be equipped with a sensor (or a set of
sensors) able to detect the presence of any obstructions.
We use an ultra-sonic sensor capable of detecting the
presence of an object, no matter what kind of object it is
(just a surface that can reflect the signal is enough)
situated in front of the MAV - along a straight line - until
25 meters distance. In the context of our simulations, the
obstacles that the aircraft are able to perceive through this
sensor consist of: a building, the target and another MAV.
 Starting from the A2 architecture, we have added
one neuron to the input layer and two to the hidden layer.
The behaviour of the new input neuron is straightforward,
as it simply encodes the distance from the nearest obstacle
perceived by the MAV, according to Table 3.

Table 3. Econding related to the ultra-sonic sensor perception

Distance (meters) Discretized value
1165 <= distance < 33.6 0.0
33.6 <= distance < 30.24 0.1
30.24 <= distance < 26.88 0.2
26.88 <= distance < 23.52 0.3
23.52 <= distance < 20.16 0.4
20.16 <= distance < 16.8 0.5
16.8 <= distance < 13.44 0.6
13.44 <= distance < 10.08 0.7
10.08 <= distance < 6.72 0.8
6.72 <= distance < 3.36 0.9
3.36 <= distance <= 0 1.0

 One of the main difficulties of this task arises from
the fact that, using a sensor of this kind, the MAVs can
simply detect a generic obstacle in front of them without
the knowledge of what kind of obstacle it is. They are not
aware, in fact, of the real nature of the obstacle they are
facing, i.e. if it is, for example, a building or the target
they are looking for instead. Therefore they need to make
an assumption about what the perceived obstacle is, based
on the others sensorial information gathered. In other
words, they have to identify the target matching the
information provided by the ultrasonic sensor with the
distance from the target that they receive in turn from
another sensor.
 From a technical perspective the simulation has been
subject to only few minor changes with respect to the A-
series. First of all, the fitness formula (1) has been
modified and now - in order to assign a strong importance
to the obstacle-avoidance issue - it stresses the factor φ
more than before:

 fitness = −α + (
β
50

) + (σ *50) + (φ *10) (2)

 To achieve a good generalization ability, the MAVs
no longer start from the usual positions close to the
environment’s corners, but from a semi-random starting

point instead. The distance from the boundaries is fixed
(one MAV per side of the environment), while the exact
starting position is randomly assigned before every test.
Furthermore, during the four tests, the target is deployed
two times in a random position into an “enclosed area” at
the centre of the environment, and the other two times in a
random position outside the enclosed area.
 In order to make the navigation task easier, the
MAVs’ turning radius has been increased from +/-10° to
+/-20°. This modification has been partially mitigated by a
second change: now - during each step - the MAVs no
longer make a movement 3.14 meters long, but a
movement of 2.24 meters’ length instead. The amount of
energy spent for a single step has consequentially been
reduced from 3.01 to 2.14.
 Also, since the new behaviour requested to the
MAVs is more complicated than the previous one, the
evolution length has been increased from 500 to 2,000
generations.

Figure 4. Ultra-sonic sensors set up for Simulations B
(A: architecture B1; B: B2; C:B3; D:B4)

The experimental setup described here corresponds to
Simulation B1. In order to pinpoint the most efficient
configuration able to evolve obstacle-avoidance
capability, three other simulations have been carried out
with different sensors set up. As detailed in Figure 4,
simulations B2, B3 and B4 all use three ultra-sonic
sensors (with the respective input neurons) instead of only
one. The corresponding neural network architectures are
slightly different with respect to the one used in B1, since
a larger amount of hidden neurons (15 instead than 12)
has been inserted on them.

3.3.1 Simulations B: results
The results coming out from the second set of simulations
need to be analyzed thoroughly.
Table 4. Average fitness, percentage of tests concluded successfully and
average minimum distance from the target for Simulations B. The values

are the average of the last 10 generations, based on 5 seeds

Sim. Average
fitness

Percentage of
tests succeeded

Minimum distance
from the target

B1 51.09 62.13 0.67
B2 257.27 87.07 0.14
B3 238.09 84.5 0.44
B4 257.62 87.18 0.54

1048

What is striking is that Simulation B1 is the one which
performs worst in the overall group. This outcome was to
some extent expected, since the presence of only one
ultra-sonic sensor does not allow the MAVs to know in
which direction to turn when facing an obstacle. Aircraft
evolved in this experimental setup are able to reach and
neutralize the target only 62% of the times, while, on
average, one aircraft per test crashes against a building.
 Simulations B2, B3 and B4 look much more
promising. All the members of this subsection score a
good result in terms of percentage of tests successfully
concluded (respectively 87%, 84% and 87%). The relative
bad performance of B3 is due to the fact that the obstacle-
avoidance ability of the MAVs evolved in this setup is
less effective with respect to Simulations B2 and B4. To
clarify this point, consider that on the “average swarm” of
the population evolved in Simulation B3, there is (again,
on average) one MAV that crashes against a building
every three tests, versus one each four tests for Simulation
B3 and one each five tests for Simulation B4).
Furthermore, the MAVs - particularly when enclosed
within restricted areas surrounded by obstacles - can
sometimes get stuck in a kind of loop. Basically they
continue to turn on themselves, until their available
energy goes out. This condition happens much more
frequently in Simulation B3 than in Simulations B2 and
B4.
Figure 5. The end-test condition for the average swarms of Simulation B4

 Looking at Table 4, the results obtained by B2 and
B4 appear very similar. The last column - “Minimum
distance from the target” - could look like a bad score for
Simulation B4, but we have to consider that, in order to
destroy the target, a MAV needs to detonate within a two-
pixel distance from it. It does not make a big difference
having an average minimum distance from the target, for
the swarm’s member detonated closest to it, of 0.1394 or
0.5426 instead.
 Observing the data contained in Table 5, related to
the conditions of the “average swarm” at the end of the
“average test”, the advantages of Simulation B4 become
evident. With respect to Simulation B2, in fact, there are a
wider number of MAVs alive (2.3 vs. 2.17), due to fewer
detonations (1.03 vs. 1.05) and to a better obstacle-
avoidance capability (on average, 0.22 MAVs crash

against a building vs. 0.32). The only pitfall is the average
amount of MAVs that finish their energy during the test:
0.23 for B4 vs. 0.18 for B2.

Table 5. End-test conditions for the Simulations B's "average swarm"

Sim. Alive Detonated
Crashed
against a
building

Out of
energy

Other
death

B1 1.18 1.22 0.99 0.32 0.29
B2 2.17 1.05 0.32 0.18 0.28
B3 2.2 1.03 0.28 0.27 0.22
B4 2.3 1.03 0.22 0.23 0.22

 Simulation B4 can be anyhow declared the best
between all the “Family B” simulations carried out.

4 Conclusion and further
developments

In the simulations described here we have identified the
minimum set of sensors, with the respective encodings,
needed to evolve neural network controllers for
autonomous MAV swarms able to navigate along an
unknown environment, with or without obstacles, and to
perform a pre-defined action when a certain target has
been reached. This work constitutes a baseline
framework that will act as a solid starting point for the
future studies regarding the employment of MAV swarms
in different kinds of tasks. Particularly, the main research
directions that will be followed during the next years are
two.
 Sociality and cooperative tasks. The task presented
here, even if conducted by a swarm composed of many
members, could not be fully classified as a cooperative
task. The MAVs, in fact, act individually, interacting with
the teammates only through their ultra-sonic perception
when it happens that two or more of them are flying over
the same area. The next step will be to make the task a
social one, e.g. requiring a coordinated attack (two or
more MAVs that detonate simultaneously) in order to
neutralize the target. To successfully accomplish such a
kind of task, the swarm’s members need at least to know
the position of their teammates.
 Evolution of communication. From the previous
point easily arise the awareness that the usage of explicit
forms of communications between the MAVs could
dramatically improve their performance in accomplishing
a cooperative task. Most MAS models that have
considered communication typically refer to implicit
forms of communication, such as visual cues in predator
models [8] and stigmergy communication in colonies [7],
or to the technical aspects of agent communication
protocols [5]. Instead, the use of explicit forms of
communication (e.g. symbolic, language-like systems) can
be crucial in tasks requiring higher levels of cognitive
capabilities, such as planning and decision making, and
for the integration of language and cognitive capabilities
[23][24][25]. By explicit forms of communication we
mean the use of symbolic lexicons in which it is possible

1049

to identify a clear symbol/meaning relationship grounded
on the agents’ collaborative task properties and processes.
New studies on the role of explicit communication in
MAS have many theoretical and technological
implications. In particular, agents that are allowed to
communicate explicitly during the execution of
collaborative tasks might benefit from the exchange of
information regarding properties of the task being
processed. Such explicit communication systems do not
have to be defined a priory by the human designer, but can
autonomously emerge from social interaction between
agents [26][27].
 At the same time, the simulator will gradually evolve
toward a more realistic three-dimensional model, able to
take into account the physical properties of the actors
involved in the simulations. This, in fact, will constitute
the last step required in order to think of the usage of
MAVs, endowed with genetically evolved neural network
controllers, within real applicative scenarios.

Acknowledgments
Effort sponsored by the Air Force Office of Scientific Research,
Air Force Material Command, USAF, under grant number
FA8655-07-1-3075. The U.S. Government is authorized to
reproduce and distribute reprints for Government purpose
notwithstanding any copyright notation thereon.
The authors would also thank euCognition.org for the support
provided (Network Action NA097-3).

Disclaimer
The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or
implied, of the Air Force Office of Scientific Research or the
U.S. Government.

References
[1] C.W. Reynolds, Flocks, Herds, and Schools: A Distributed
Behavioral Model, Computer Graphics, Vol. 21-4 (SIGGRAPH '87
Conference Proceedings), pp. 25-34, 1987.
[2] G. Nitschke, Emergence of Cooperation: State of the Art,
Artificial Life, Vol. 11-3, pp. 367-396, 2005.
[3] G. Baldassarre, D. Parisi and S. Nolfi, Distributed
Coordination of Simulated Robots Based on Self-Organization,
Artificial Life, Vol. 12-3, pp. 289-311, 2006.
[4] J.M. Eklund, J.S. Sprinkle and S. Sastry, Template Based
Planning and Distributed Control for Networks of Unmanned
Underwater Vehicles, 44th IEEE Conference on Decision and
Control and European Control Conference (CDC-ECC’05), 2005.
[5] R. Weiss (Ed.), Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence, MIT Press, 2000.
[6] M. Koes, I. Nourbakhsh and K. Sycara (2006) Constraint
Optimization Coordination Architecture for Search and Rescue
robotics, Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA) 2006, pp. 3977-3982, 2006;
[7] V. Trianni and M. Dorigo, Self-organization and
Communication in Groups of Simulated and Physical Robots,
Biological Cybernetics, Vol. 95-3, pp. 213-231, 2006.
[8] A.M. Barry and H. Dalrymple-Smith, Visual Communication
and Social Structure. The Group Predations of Lions, Proceedings

of International Workshop on the Modelling Natural Action
Selection (MNAS05), 2005.
[9] S.A. Cambone, K.J. Krieg, P. Pace and L. Wells II,
Unmanned Aircraft Systems Roadmap 2005-2030,
http://uav.navair.navy.mil/roadmap05/USRoadmapAug%2005.pdf.
[10] M.D. Richards, D. Whitley and J.R. Beveridge, Evolving
Cooperative Strategies for UAV Teams. Genetic and Evolutionary
Computation Conference (GECCO 2005), ACM Press, 2005.
[11] V. Ablavsky, D. Stouch and M. Snorrason, Search Path
Optimization for UAVs using Stochastic Sampling with Abstract
Pattern Descriptors, Proceedings of the AIAA Guidance Navigation
and Control Conference, 2003.
[12] S. Rathinam, M. Zennaro, T. Mak and R. Sengupta, An
Architecture for UAV Team Control, IAV2004: Fifth IFAC
symposium on intelligent autonomous vehicles, 2004.
[13] P. Vincent and I. Rubin, A Framework and Analysis for
Cooperative Search using UAV Swarms, Proceedings of the 2004
ACM symposium on Applied computing, pp. 79-86, 2004.
[14] F.W. Moore, A Methodology for Missile Countermeasures
Optimization under Uncertainty, Evolutionary Computation, Vol.
10-2, pp. 129-149, 2002.
[15] G.J. Barlow, C.K. Oh and E. Grant, Incremental Evolution of
Autonomous Controllers for Unmanned Aerial Vehicles using Multi-
Objective Genetic Programming, Proceedings of the 2004 IEEE
Conference on Cybernetics and Intelligent Systems, 2004.
[16] S. Nolfi and D. Floreano, Evolutionary Robotics. The Biology,
Intelligence, and Technology of Self-Organizing Machines, MIT
Press, 2004.
[17] M. Mitchell, An Introduction to Genetic Algorithms, MIT
Press, 1998.
[18] V.S. Kodogiannis, Neuro-Control of Unmanned Underwater
Vehicles, International Journal of Systems Science, Vol. 37-3, pp.
149-162, 2006.
[19] D. Floreano, S. Hauert, S. Leven and J.-C. Zufferey,
Evolutionary Swarms of Flying Robots, International Symposium on
Flying Insects and Robots, pp. 35-36, 2007.
[20] O. Holland, J. Woods, R. De Nardi and A. Clark, Beyond
Swarm Intelligence: the Ultraswarm, IEEE Swarm Intelligence
Symposium (SIS2005), 2005.
[21] R. De Nardi, O. Holland, J. Woods and A. Clark, SwarMAV:
A Swarm of Miniature Aerial Vehicles, 21st Bristol UAV Systems
Conference, 2006.
[22] D. Rathbun and B. Capozzi, An Evolution Based Path
Planning Algorithm for Autonomous Motion of a UAV through
Uncertain Environments, Proceedings of the AIAA Digital Avionics
Systems Conference, 2002.
[23] L.I. Perlovsky, Integrating Language and Cognition, IEEE
Connections, Vol. 2-2, pp. 8-13, 2004.
[24] L.I. Perlovsky, Neural Networks, Fuzzy Models and Dynamic
Logic, Chapter in R. Kohler and A. Mehler (Ed.), Aspect of
Automatic Text Analysis (Festschrift in Honor of Burghard Rieger),
Springer, Germany, pp. 363-383, 2006.
[25] V. Tikhanoff, J.F. Fontanari, A. Cangelosi and L.I. Perlovsky,
Language and Cognition Integration through Modeling Field
Theory: Category Formation for Symbol Grounding, Proceedings of
ICANN06 International Conference on Artificial Neural Networks,
2006.
[26] A. Cangelosi and D. Parisi, Simulating the Evolution of
Language, Springer-Verlag, 2001.
[27] D. Marocco and S. Nolfi, Emergence of Communication in
Embodied Agents Evolved for the Ability to Solve a Collective
Navigation Problem, Connection Sciences, (in press).

1050

