
An Evolutionary Robotics 3D model for autonomous MAVs
navigation, target tracking and group coordination

Fabio Ruini, Member, IEEE and Angelo Cangelosi

Abstract— The work presented herein describes an applica-
tion of Evolutionary Robotics controller design methodologies
to the domain of Micro-unmanned Aerial Vehicles (MAVs). The
aim of this paper is to extend and validate preliminary results
obtained through a simplified 2D simulator, to a more realistic
3D model. After a technical introduction of the newly developed
simulation model, the results generated by three different
experimental setups - all of them focused on autonomous
navigation toward a specific target area - are described. The
first scenario simply involves a single MAV navigating through a
plain environment toward a non-movable target. In the second
setup the target is able to move away, at different speeds,
when approached by the aircraft. Finally, in the third scenario,
teams consisting of more than one MAV are employed; the
team members have to coordinate among themselves - exploiting
implicit communication strategies - in order to reach the target
at the same time. The nature of the tasks studied requires a
high level of accuracy by the controllers, something which is
not common in most of the ER literature.

I. INTRODUCTION

Evolutionary Robotics (ER) [1][2] is a scientific field,
having as principal aim the design of autonomous controllers
for robots, that has received great attention during the last
few years. Despite the number of researches carried out in
accord to this paradigm and the amount of theoretical work
performed in order to better understand the processes under-
lying the evolutionary design, the practical results obtained so
far can still be considered disappointing from many points of
view. Any person who has had the chance to see in action, for
example, a Khepera [3] or an E-Puck [4] robot driven by an
evolutionary controller, must have immediately noticed how
these robots can display quite sophisticated behaviour. The
drawback consists in the fact that they mostly tend to behave
in a careless and unsystematic way, moving slowly and
frequently changing their direction, bumping into obstacles,
getting stuck into never ending movement loops, etc..

In practical applications, the difference between an evo-
lutionary controller and a hand-designed one is, generally
speaking, so huge that does not need to be highlighted. The
sloppy performances shown by ER controllers are typically
attributed to the so-called reality gap effect [5], taking place
when the evolved controllers are transferred from computer
simulated robot models to physical platforms facing the
complexity of the real world. Computer simulations are a
common instrument used in ER, employed in order to reduce
the time required by the evolutionary process as well as to do
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not subject the real robots to potentially dangerous situations.
The reality gap effect arises because of the simplifications
introduced during the development of the computer models.
As models, they tend in fact to be simplified reproductions
of the reality, targeted to reproduce the main characteristics
of the real world only. A controller evolved in such a low-
complexity world might incur in unexpected situations when
put inside a real physical environment, resulting in erroneous
or non-optimal behaviours.

At the same time it might be argued that ER researchers
have not been yet particularly concerned on obtaining fast
and high-precision controllers. This work aims to represent
a step forward in the direction of developing more accu-
rate evolutionary controllers than those created so far. To
demonstrate that no radical modifications to the classic ER
approaches are required is another of our goals. In order to
pursue this vision, the domain that we have decided to tackle
is one that, by definition, requires a great degree of precision.
Our focus is in fact on the design of autonomous controllers
for fixed-wing Micro-unmanned Aerial Vehicles (MAVs) [6].

A. Literature review

The literature seems not being abundant in terms of
research carried out with neural networks - let alone ge-
netically evolved - employed as controllers for robotics air-
craft. For the most part, researchers working on autonomous
controllers for aircraft outside the traditional engineering
fields rely on techniques other than neural networks, such
as behavior-based robotics [7], genetic programming [8] and
evolutionary-based path planning [9]. There are nonetheless
some significant exceptions to this trend, constituted for
example by the CSIRO [10] and the SwarMAV [11] projects,
where small helicopters use, to different extents, neural net-
works as controllers. Helicopters, although presenting issues
related to flight stabilisation, can be considered much more
easily controllable than fixed-wing aircraft. Moving from
these considerations, it does not come to surprise that the
latter domain is only marginally touched by the literature
in autonomous control, with the main contributions coming
from the ongoing research at the EPFL [12] [13].

B. Preliminary work

Before describing our latest work, we briefly review the
preliminary investigations that have been carried out in order
to test our working hypothesis on a simplified setup. In
our previous work [14] [15] we have built a 2D computer
simulator aimed to identify the possible limitations of an
application of the ER approach to the domain of MAVs

WCCI 2010 IEEE World Congress on Computational Intelligence 
July, 18-23, 2010 - CCIB, Barcelona, Spain IJCNN

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 760



autonomous navigation within urban-like environments. In-
side the simulated environment we created (taking inspiration
from the Canary Wharf quarter in London), the MAVs driven
by evolutionary controllers have proven to be capable of
obstacle-avoidance, target tracking and group coordination
based on simple forms of implicit communication. All the
tests carried out have generated encouraging results, thus
suggesting the possibility of further developments.

II. THE 3D MODEL

In the new 3D model we describe in this paper, the
general task the MAVs are subject to consists of autonomous
navigation toward a certain target area - within an obstacle-
free environment - relying on a mixture of local and global
information. The assumption underlying the model is that
an ”upper” system - aware of the location of the target
area - is always available and broadcasts this information
in real-time to the aircraft. The MAVs can then match this
knowledge with proprioceptive information related to their
current position and orientation, finding in this way the path
to be followed for reaching the target area.

Moving from a 2D to a 3D simulator implies that the
degrees of freedom (DoF) available to the simulated aircraft
increase from one to three. In the 2D scenario the MAVs rely
in fact on a single DoF, since they can just rotate clockwise or
anti-clockwise. An object located inside a three-dimensional
environment, instead, can rotate around three different axes.
Within the aeronautics field [16] these rotations are com-
monly named as follows: (a) yaw, the rotation around the
top-down axis, (b) pitch, the rotation around the wing-to-
wing axis, and (c) roll, the rotation around the nose-to-tail
axis (see Figure 1). These are the same rotations the aircraft
we simulate can perform within our computer model.

Fig. 1. Graphical representations of the 3 rotations possible for a typical
fixed-wing aircraft: yaw, pitch, and roll

From a computational perspective, the introduction of the
roll is the most significant addiction to the previous model.
According to the current roll angle of the aircraft, in fact, yaw
and pitch rotations can produce completely different results.
Making difficult, for the controller, to accurately figure out
the potential outcome of any given manoeuvre.

A. The computer simulator: technical details

The computer simulator used for this work - written
in C++ - has been developed relying on a few open-

source libraries, namely Irrlicht1 as 3D engine, NNFW2 to
manage the neural networks-related aspects, and Qt3 for
multi-threading support. No real physics engines have been
used, mainly for two reasons. First, this work explicitly
looks at the navigation problem from an higher perspective
than what is typically done in control systems literature. In
order to focus on intelligent navigation, we assume that the
robotic aircraft we simulate are able to respond to high-
level commands (e.g., “yaw 1 ◦ clockwise”, or “pitch 0.3 ◦

up”) in the expected way. Once we implement non-physics
based but at the same time non-irrealistic aircraft dynamics
in our simulator, our purposes are satisfied. Last but not
least, ER approach generally requires a significant amount
of time for the evolutionary process to reach a steady state.
Avoiding a physics engine allows to reduce the impact of
this requirement.

The simulator consists of two components running in-
dependently: the evolutionary engine and the viewer. The
evolutionary engine just performs the computation required
for the evolution. The viewer is instead a GUI software
capable of loading from the memory an evolved individual
and displaying its behaviour to the end user, in order to study
the reasons behind certain behavioural patterns emerged.

All the simulations have been carried out on a com-
puter grid managed by Sun Grid Engine4, consisting of 4
AppleTMXserve machines (each of those installing two quad-
core 2.66GHz IntelTMprocessors and 4GB of RAM) awarded
by our research group through the Apple ARTS program.

B. Neural network controller

The controllers used are constituted for the most part by
fully-connected feed-forward neural networks embodied into
the MAVs (some variations to this base architectures will
be described later on). These controllers are fed with input
information coming both from the external environment and
from within the robot. Knowledge which is then translated
into direct commands for the robot’s motor actuators.

The input the controller receives at any time-step are
four: the horizontal angle to the target (Ψi), the vertical
angle to the target (θi), the current roll angle (Φi), and the
distance from the target (d). This information is processed
by the network, which in turn affects the activation level
of four output neurons. Three of these units (continuous)
determine the rotations the MAV will perform in the time
unit: yaw (Ψo), pitch (θo), and roll (Φo). The remaining
unit (end) is a Boolean one that must be activated by the
aircraft only once during its entire life-span, ideally when
closer to the target than a certain threshold. All of the non-
input and non-Boolean neurons belonging to the network gets
activated according to a tan-sigmoid function (slope 1.0),
which output values are within [−1.0; +1.0]. Summation is
the only aggregation function used.

1http://www.irrlicht.sourceforge.net
2http://www.nnfw.org
3http://qt.nokia.com
4http://gridengine.sunsource.net/
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Fig. 2. Example of one of the NN controllers adopted. In this architecture
the input is discrete and there are neither hidden layer or memory involved.
The aircraft controlled can perform all the possible rotations: yaw, pitch and
roll

C. Evolutionary algorithm and general simulation details

Following what the ER paradigm dictates, the proper sets
of synaptic weights for the neural network controllers to per-
form the desired tasks are obtained running an evolutionary
algorithm [17], specifically a genetic algorithm (GA).

The starting population used consists in 30 individuals5,
with connection weights and biases randomly assigned at
the beginning of the evolution within the [−10.0; +10.0]
range. Each controller is tested for four epochs inside a
virtual environment - a three-dimensional area with size
1,000 (X) x 1,500 (Z) x 600 (Y) graphical units (GU) -
starting each of them from a different position and with
the target area randomly dislocated. The aircraft has an
approximate length of 3.5GU, while the target is constituted
by a sphere with a 15GU radius. A MAV starts each test with
5,000 energy units (EU) available; during each time-step it
consumes 1EU, while moving 2GU according to its heading
direction. The rotations generated by the controller in the
time-unit are included inside the [−1.0 ◦; +1.0 ◦] range. It
is worth noting that, in order to simulate a more realistic
flying behaviour, every time the aircraft performs a yaw
a corresponding amount of roll is automatically applied.
As mentioned above, the Boolean output can be activated
only once during the entire individual’s life-span. When this
neuron turns to 1, as well as when the MAV exits from the
environment boundaries or runs out of energy, the current
test epoch is immediately considered concluded (successfully
or not depending on the MAV-target distance when this
operation has took place).

When all the members of the current generation have
been evaluated, the five individuals having scored the best
performance according to the fitness function in use are
selected for reproduction. The best one is copied to the
next generation without any modifications (elitism), while
the other four are subject to a process of random mutation

5The relatively small number chosen for the population size takes
inspiration by the tradition of the Sussex Approach [18].

which affects each of their genes - with probability 0.1
- by a random value picked within [−0.05; +0.05] range.
The genome is implemented via parametric encoding, with
each gene constituted by a real value, representing either a
connection weight or a bias. Five new individuals, with a
random set of connection weights and biases, are introduced
at any new generation to reduce the risk of premature
convergence within the population. The process is iterated
for a certain amount of generations and then repeated from
the scratch for a few times (we will call each of this run
evolutionary seed) in order to obtain results the less affected
by randomness as possible.

III. RESULTS

Three different experimental setups have been elaborated.
The details of these experiments and the results obtained are
described in the following subsections.

A. Plain environment

The first scenario acts as a sort of experimental benchmark.
What we are interested in investigating using this setup
are the performances generated by different neural networks
relying on contrasting input sets and internal organisation.

The fitness formula used for evaluating the behaviour of
the aircraft in this setup involves two parameters: α, which
represents the average value - across the four epochs of
testing - for the differential between the MAV-target distance
at the beginning and at the end of the test (thus representing
the distance covered on the way to the target); β, indicating
instead the overall number of tests succeeded. α is set to 0
in case the MAV has concluded the test because exited from
the environment boundaries or ran out of energy. Equation
(1) shows the simple way in which this two parameters have
been put in correlation.

fitness = α+ β ∗ 100 (1)

Various NN architectures have been tested. The variables
that have been mixed together in the different architectures
are: (a) having the possibility to perform all the rotations
described or just a subset of these, (b) short term memory
present/absent, (c) hidden layer present/absent, (d) discrete
or continuous input stream gathered from the environment.
A summary of the 24 architectures analysed is reported
in Table I. When the hidden layer is used, the amount
of neurons constituting it has been arbitrarily set to 10.
According to the presence or the absence of the hidden layer,
a basic memory capability has been provided to the networks
through either a Elman [19] or a Jordan [20] network.

The desired behaviour has emerged from the evolutionary
process in a relatively small amount of generations for most
of the experimental setups. An example of this behaviour is
visible in Figure 3, while a resume of the main results is
included in Table II.

Looking at the results more in details, we can see that
the sets of rotations made available to the MAV have a
significant impact on its performance. When only yaw is
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TABLE I
NEURAL NETWORK ARCHITECTURES TESTED

Arch. Pitch Roll Hid. Mem. Input
1 No No No No D
2 No No No No C
3 Yes No No No D
4 Yes No No No C
5 Yes Yes No No D
6 Yes Yes No No C
7 No No Yes No D
8 No No Yes No C
9 Yes No Yes No D
10 Yes No Yes No C
11 Yes Yes Yes No D
12 Yes Yes Yes No C
13 No No No Jordan D
14 No No No Jordan C
15 Yes No No Jordan D
16 Yes No No Jordan C
17 Yes Yes No Jordan D
18 Yes Yes No Jordan C
19 Yes No Yes Elman D
20 Yes No Yes Elman C
21 Yes No Yes Elman D
22 Yes No Yes Elman C
23 Yes Yes Yes Elman D
24 Yes Yes Yes Elman C
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Fig. 3. Example of the flight paths followed by 4 evolved individuals
sharing the same controlle, put into the environment at the same time, but
moving from different starting positions

permitted (thus recreating, in fact, a 2D scenario) controllers
able to perform the desired task with a 100% accuracy level
emerge just after a few generations. The same applies when
both yaw and pitch are used. The introduction of roll has
instead a significant impact and lead to worse performances,
that anyway are acceptable for both architectures 5 and 11
(93.28% and 87.39% success rate respectively).

Probably due to simplicity of the elaborated scenario,
which does not require any additional ability for the MAV
than just pointing to the target area, the architectures pro-
viding memory to the controller have not generated any

TABLE II
RESULTS FROM SIMULATIONS A

Arch. Av. fitness Max fitness Av. succ. rate Max succ. rate
1 986.2004 1425.6 0.8026 1
2 963.7084 1425 0.7825 0.999
3 856.5177 1393.4 0.6284 0.9915
4 780.2524 1262.4 0.4475 0.7869
5 711.8221 1310.5 0.4641 0.9328
6 383.02 743.4625 0.0071 0.0609
7 988.631 1425.6 0.7952 1
8 976.4259 1428.3 0.7994 1
9 827.5582 1386.3 0.6161 0.9972

10 917.5059 1403.8 0.6809 0.996
11 693.2277 1267.9 0.4095 0.8739
12 599.5794 1045.8 0.2279 0.4684
13 974.5937 1421.3 0.7848 1
14 926.9137 1415.2 0.7465 0.9991
15 715.7472 1266.4 0.3982 0.828
16 452.4319 824.1322 0.0044 0.0805
17 389.929 824.979 0.021 0.1727
18 353.6284 705.1607 0.0009 0.0264
19 790.9081 1345.8 0.598 0.9774
20 779.0397 1340.1 0.5567 0.9692
21 447.198 916.2571 0.0904 0.3263
22 397.223 777.722 0.0138 0.0881
23 319.8735 715.7084 0.0083 0.0854
24 320.8331 639.6556 0.0002 0.007

benefits. Even worse, the controllers implementing Elman
and Jordan networks have scored significantly lower success
rates than those based on purely feed-forward networks. The
performances are comparable only for the simplest situation
(no pitch and no roll), and partially for the second simplest
setup (yaw and pitch, but no roll). This is probably due
to the significantly increased search space the evolutionary
algorithm has to investigate in order to find an optimum
point when the additional connection weights associated to
the memory structures come into play.

The use of a hidden layer has proven to be beneficial
for the performances of the controllers when no memory
structures are employed. With Simulations 5 and 11 being
exceptions (in this case, architecture 5, without a hidden
layer, has performed better than its counterpart having in-
ternal neurons), the controllers with a layer of internal
units have in fact outperformed the two-layers networks.
The situation is completely different when memory is used.
In this case (but again with one exception, constituted by
the comparison between Simulations 16 and 22) the lack
of a hidden layer seems to be beneficial. As before, this
result could be explained through the further increase in
dimensionality of the search space generated by the addition
of 10 more neurons, with respective synaptic connections and
biases.

Finally, using discretised input has always lead to better
or sometimes equal results than relying on a continuous
encoding. The difference is particularly evident if looking
at the results scored by architectures 5 and 6, or 17 and 18.

B. Moving target

The problem of tracking and approaching a movable
target is common in the literature. Traditional (engineering)

763



1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

90

100

Neural network architectures

P
e
rc

e
n
ta

g
e

Percentage of tests successfully performed by the best individual

Fig. 4. Barplot displaying the maximum success rate obtained by the best
individual evolved with the different controller architectures unprovided of
memory structures. The standard error - calculated as standard deviation
divided by the number of evolutionary seeds ran - is also shown

approaches to autonomous navigation usually require the
robot to elaborate a prediction of the target motion based
either on observations or on already available knowledge
[21]. Based on this prediction, the robot can then modify its
action plan accordingly. The main drawback of this method
consists in the fact that extracting the information required
and translating it into coherent actions is generally a non-
trivial task. It is true that this approach, although generally
hard to be implemented, can be effective and lead to good
results when carefully implemented. Nonetheless, in presence
of a target that does not move according to any specific
pattern, the task increases dramatically in terms of complex-
ity, making difficult for a human designer to come out with
a working solution. Various authors - such as Bertuccelli
[22] and Ablavski [23] - have proposed interesting ways to
overcome this issue, respectively focusing on individual or
collective behaviours, but the problem remains serious and a
definitive solution to it seems far to be achieved. By contrast,
we will see in this Section how our ER-based approach
to autonomous navigation can be very effective also when
dealing with a moving target.

The experimental setup described here is similar to the
previous one. The only difference consists in the fact that
now the target area can move away from an approaching
MAV. At any time step the target can be in either one of two
different status: MAV detected or MAV not detected. When
in MAV not detected mode, the target scans its surroundings
- before the aircraft moves - looking for a MAV within a
35GUs distance from its centre. In case this condition is
satisfied, the target switches to MAV detected mode with
probability 0.5. When the target is in MAV detected status
at the beginning of any given time step, it has to move
to a new place. Table III shows 26 different positions the
target can chose between when deciding in which direction

to move, based on its current (X,Y, Z) coordinates. These
points are calculated in order to be all equidistant from its
center (i.e., points on the surface of an imaginary sphere
sharing its origin with the centre of the target and having a
ray equal to its movement speed) and representative of the
entire neighbourhood the target could end up in. The target
does not have any kind of preference and its movements are
not affected by inertia: at any time step it simply moves to
the position which maximise its distance from the MAV.

TABLE III
POSSIBLE MOVING POSITIONS FOR THE TARGET

New X New Y New Z
X Y Z + d

X + d ∗ cos(π4 ) Y Z + d ∗ sin(π4 )
X + d Y Z

X + d ∗ cos( 3
4π) Y Z − d ∗ sin( 3

4π)
X Y Z − d

X − d ∗ cos(− 3
4π) Y Z − d ∗ sin(− 3

4π)
X − d Y Z

X − d ∗ cos(−π4 ) Y Z + d ∗ sin(−π4 )
X Y + d Z
X Y + d ∗ cos(π4 ) Z + d ∗ sin(π4 ) ∗ cos(0)

X + d ∗ sin(π4 ) ∗ sin(π4 ) Y + d ∗ cos(π4 ) Z + d ∗ sin(π4 ) ∗ cos(π4 )
X + d ∗ sin(π4 ) ∗ sin(π2 ) Y + d ∗ cos(π4 ) Z

X + d ∗ sin(π4 ) ∗ sin( 3
4π) Y + d ∗ cos(π4 ) Z − d ∗ sin(π4 ) ∗ cos( 3

4π)
X Y + d ∗ cos(π4 ) Z − d ∗ sin(π4 ) ∗ cos(π)

X − d ∗ sin(π4 ) ∗ sin(− 3
4π) Y + d ∗ cos(π4 ) Z − d ∗ sin(π4 ) ∗ cos(− 3

4π)
X − d ∗ sin(π4 ) ∗ sin(−π2 ) Y + d ∗ cos(π4 ) Z

X + d ∗ sin(π4 ) ∗ sin(−π4 ) Y + d ∗ cos(π4 ) Z + d ∗ sin(π4 ) ∗ cos(− 3
4π)

X Y − d Z
X Y − d ∗ cos(π4 ) Z + d ∗ sin(π4 ) ∗ cos(0)

X + d ∗ sin(π4 ) ∗ sin(π4 ) Y − d ∗ cos(π4 ) Z + d ∗ sin(π4 ) ∗ cos(π4 )
X + d ∗ sin(π4 ) ∗ sin(π2 ) Y − d ∗ cos(π4 ) Z

X + d ∗ sin(π4 ) ∗ sin( 3
4π) Y − d ∗ cos(π4 ) Z − d ∗ sin(π4 ) ∗ cos( 3

4π)
X Y − d ∗ cos(π4 ) Z − d ∗ sin(π4 ) ∗ cos(π)

X − d ∗ sin(π4 ) ∗ sin(− 3
4π) Y − d ∗ cos(π4 ) Z − d ∗ sin(π4 ) ∗ cos(− 3

4π)
X − d ∗ sin(π4 ) ∗ sin(−π2 ) Y − d ∗ cos(π4 ) Z

X + d ∗ sin(π4 ) ∗ sin(−π4 ) Y − d ∗ cos(π4 ) Z + d ∗ sin(π4 ) ∗ cos(− 3
4π)

The results presented in this section refer to architectures
11 and 5, those that provided the best results in Simulations A
- in the most difficult scenario - respectively for the subsets
of networks with and without a hidden layer. The aircraft
can therefore yaw, pitch and roll. In order to allow the
evolution of the more sophisticated behaviour now required,
the evolution length has been extended to 20,000 generations
and 20 evolutionary seeds have been elaborated. Given Ms

the speed of the MAV, five different evolutions have been
performed for each architecture, with the target moving
respectively at a speeds Ts equal to Ms

5 , Ms

4 , Ms

3 , Ms

2 and
Ms.

As expected, varying the speed of the target has affected
the MAVs’ performances. These results are extremely similar
to those obtained with our previous work on the 2D simulator
[15]. What we can observe is the emergence of a sort of
threshold value for Ts that once exceeded makes the MAV
unable to succeed in the task anymore. For targets moving at
Ms

5 , Ms

4 and Ms

3 , the success rate for the best individual of
the population is about 90%, both when the architecture is
lacking a hidden layer (Figure 5), and when the network can
rely on this additional computational capability (Figure 6).
More specifically, the percentage of tests concluded success-
fully ranges from 86.57% and 95.71%. A target moving at
Ms

2 results instead much more difficult to be approached
by the MAVs, with the two simulations respectively scoring
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54.03% and 59.85%. When the target and the MAV move
at the same speed (Ts = Ms), the latter practically never
succeeds in the task (0.0008% and 0.006%).
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Fig. 5. Percentage of tests concluded successfully for the best individual
of the population evolved with neural architecture 5, at different Ts
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Target speed = MAV speed

Target speed = MAV speed / 2
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Fig. 6. Percentage of tests concluded successfully for the best individual
of the population evolved with neural architecture 11, at different Ts

C. Implicit cooperation with a non-movable target

The goal of achieving coordination and cooperation among
a team of autonomous robots is a notably interesting problem
from both a scientific and technological perspective [24].
This is particularly true when the designer decides to do not
rely on a central controller (some criticisms to this approach
can be found for example in [25]), but rather opts for
pursuing coordination and cooperation in a distributed way
[26]. In this section we present the results obtained in a new
task, where MAV teams have to achieve coordination among
their members - relying on implicit (i.e., non-voluntary)
communication strategies - in order to succeed in a task that
can not otherwise be achieved individually.

The target area, in this scenario, does not move. The
setup is more complicated than the one presented in section
B, because of the fact that instead of one single MAV,
teams made by 4 MAVs sharing the same controller are now
employed. In order to accomplish the test, at least two MAVs
need to approach the target area and activate their Boolean
neurons in quick succession. From a technical point of view,
these modifications have been implemented imposing that the
target can be - at any given time - in either one out of two
possible alternative states: sane or damaged. The target starts
each test as sane, but can be damaged later on during the
epoch. The damaging of the target takes place when a MAV
activates its Boolean unit within 15GU from the target centre.
The test is considered concluded successfully when another
MAV manages to correctly approach the target (i.e., activat-
ing the end unit when close enough to it) when the latter is
still damaged. In order to guarantee the semi-synchronicity
of the process, the target gets restored (i.e., switches back to
the sane status) after 200 time steps of damaged status. The
controller has been modified according to the new conditions,
with the introduction of two new inputs, specifically two
Boolean neurons. These units respectively get activated when
the target is in damaged status, and when a teammate is
perceived within a certain distance range (60GU) from the
aircraft embodying the controller. The motion of the MAVs
has been modified as well, in order to allow them wider
rotation angles. At any time-step they now move just 1GU
rather than 2 as in the previous setups. The amount of energy
at the beginning of a test has been increased from 5,000EU
to 15,000EU. The fitness formula also has required a minor
modification in order to cope with the new dynamics and
the fact of having MAV teams rather than individual MAVs
involved in the evolutionary process.

fitness = 〈α〉+ γ ∗ 50 + β ∗ 100 (2)

Compared to Equation 1, Equation 2 introduces a new
parameter, γ, which represent the amount of tests concluded
half-successfully, i.e. with one single MAV managing to
properly approaching the target. α has been modified to
〈α〉, thus indicating that it is now representing the average
distance traveled by all the four MAVs during the tests.

The strategy evolved by the best individuals is the same
we already observed in [15]. Basically, the first MAV arriving
in the proximity of the target does not activate its Boolean
unit immediately. It rather starts flying around the target
area, waiting for another aircraft to arrive. When a teammate
finally arrives, they both activate their Boolean neurons
accomplishing the test. An example of this behaviour can
be observed in Figure 7.

Unfortunately, this behaviour has demonstrated to be par-
ticularly hard to be achieved in the 3D model. Simulations
carried out using controllers based on architectures 1, 2, 7,
and 8 (no pitch and roll rotations available) have generally
generated good performances (success rates for the best
individual respectively equal to 89.71%, 39.9%, 93.06%, and
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Flight paths followed by a team of 3 MAVs during a test
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Fig. 7. Example of the flight paths followed by three evolved individuals,
evolved with architecture 2, put into the environment at the same time, but
moving from different starting positions. In this case MAV #0 is the first to
arrive in proximity of the target area in (−280, 360). It then starts flying
around it, while waiting for the arrival of a teammate in order to successfully
conclude the test

75.38%). Nonetheless the performances have dramatically
decreased when the wider sets of rotations allowed to the
MAVs have been introduced. Figure 8 shows the results
obtained evolving controllers based on architecture 5 (yaw,
pitch, and roll possible). In this case, the best team can
successfully conclude the task 12.79% of times (just 2.04%
for the average team), and simply manages to put the target
in damaged status the remaining 58.23% of times.
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Fig. 8. Percentage of tests concluded successfully for the best and the
average individual of the population evolved with neural architecture 5, and
percentage of tests concluded half-successfully

IV. CONCLUSIONS AND FUTURE WORK

The work described in this paper has confirmed the
feasibility of an approach based on Evolutionary Robotics

for the development of autonomous controllers dealing with
high-precision tasks, such as navigation of fixed-wing flying
robots. Comparing the results obtained by the 3D model
presented herein with those generated by our preliminary
research, we observe that the evolution of the desired be-
haviours is now significantly more challenging than before.
This is not due to a more complex environment the MAVs
have to navigate (the 3D environment, free of any obstacle,
could be instead considered simpler than the one previously
investigated), but rather to the more sophisticated flight
dynamics the aircraft are subject to, reflecting in a larger
amount of DoF available to their controllers. As we have
discussed in Section III, is the roll in particular which
make the controlling task so difficult. Nonetheless this is
not an insurmountable issue, since it could be overcame
on real robotics platforms providing them with devices (i.e.
autopilots) that automatically stabilise the aircraft around a
0 ◦ roll angle.

Further work is required in order to improve the results
obtained so far in the scenario involving implicit commu-
nication among the MAVs. New simulations, relying on
incremental evolution in order to accelerate the time required
by the evolutionary process and to direct the research across
the solution space, are being actually developed for this
purpose. Once this target will be achieved, future develop-
ments will focus on the introduction of more sophisticated
tasks, requiring forms of explicit cooperation/communication
between MAVs to evolve. At the same time, attempting to
fully replicate the results obtained using our previous 2D
model, obstacles will be inserted into the environment. The
goal will be to replicate a realistic urban-like environment,
in order to study possible applications of autonomous MAVs
in real-life scenarios.

Modeling field theory [27] [28] has been recently proposed
as a learning technique for multi-agent simulation systems
that could potentially be applied to our model. One of the
advantages of this approach is that of overcoming computa-
tional complexity and allowing better scaling up of the model
capabilities, e.g. in terms of population size and internal
representations. Future studies will explore the combination
of modeling field theory with the approach outlined herein.

Finally, we recently started to investigate the possibility
of testing the controllers evolved in our computer simu-
lations on physical robotics platforms. Many small-sized
R/C aircraft, either modified using off-the-shelf hardware (as
demonstrated for example in [29]) or already properly con-
figured (e.g., the senseFly’s swinglet6) can be adapted to the
purposes of our research with a relatively small investment,
both in terms of time and money. Future experiments will
be carried out in collaboration with the EPFL’s Laboratory
of Intelligent Systems (LIS), following the approach outlined
for example in [30]. This methodology relies on the use of
a computer board embedded on a swinglet and interfaced
with both an autopilot and a Wi-Fi module. In addition to
generating commands (mainly turn rates) to be physically

6http://www.sensefly.com/products/swinglet
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executed, the autopilot takes care of keeping the aircraft
stable and flying at a specified speed/altitude. At the same
time the Wi-Fi module establishes a communication link with
a base station, where a more powerful computer can process
the information gathered by the MAV and generate in real-
time the flight instructions needed by the aircraft in order to
perform the desired task. Adapting such a robotics platform
to our purposes is only matter of identifying, installing and
configuring the required onboard sensors. At that point, also
the investigation of the reality gap effect in the domain of
robotic aircraft will become possible.
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