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Abstract — This paper describes the approach we are 

following for using an evolutionary Multi-Agent System (MAS) 
for the control of teams of autonomous Micro-unmanned Aerial 
Vehicles (MAVs). Experiments previously carried out using a 
simple 2D model have demonstrated how the combination of 
MAS and Evolutionary Robotics (ER) methodologies can in 
principle be exploited for the development of a distributed 
control system for flying robots. The computer simulations have 
resulted in controllers evolved with the following capabilities: (1) 
navigation through unknown environments, (2) obstacle-
avoidance, (3) tracking of a movable target, and (4) execution of 
cooperative and coordinated behaviours based on implicit 
communication strategies. In order to improve the robustness of 
results and their potential use in real MAV teams, a new 3D 
simulator was developed. This new simulation model mostly 
captures the essential flight dynamics in a 3D urban 
environment. The initial results obtained with the new 3D 
simulator demonstrate the feasibility of the approach. Simulation 
experiments demonstrate that evolutionary process successfully 
leads to the development of controllers for the search and hit 
tasks. Future work will focus on further extensions of this model 
to investigate the processes involved in communication and 
coordination between autonomous MAVs. 
 

Index Terms — Multi-Agent Systems, Evolutionary Robotics, 
Neural Networks, MAVs. 

I. INTRODUCTION 
volutionary Robotics (ER) [1] uses genetic algorithms to 
evolve the neural controller of autonomous robots. 

Numerous studies based on ER have focused on ground-based 
navigation and exploration tasks [2]. More recently, the ER 
approach has been employed to domains other than ground-
based robots, such as underwater autonomous vehicles [3].  

The application of ER methodologies for air navigation and 
control is still at its infancy. Current approaches to the 
development of autonomous controllers for aircraft mainly 
rely on theoretical tools other than ER. Methodologies 
generally adopted are behavior-based robotics [4], genetic 
programming [5] evolution-based path planning [6], modeling 
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field theory [7], classic graph search methods (such as A*[8]), 
and – rarely - neural networks [9][10]. Only recently, with the 
work carried out at the EPFL [11], a proper ER approach has 
been taken into account for the development of the whole 
evolutionary control system for a group of autonomous flying 
robots. 

The work presented herein aims at the extension of ER 
techniques for unmanned aircrafts. In particular, our research 
focuses on teams of autonomous Micro-unmanned Aerial 
Vehicles (MAVs) [12] engaged on a “search and hit” task 
within an urban environment. The approach we have decided 
to follow relies on computer simulations developed through 
the mixture of Evolutionary Robotics (ER) and Multi-Agent 
Systems (MAS) methodologies (see [13] for an overview). 
Work at this stage will only be based on simulations. 

As the adoption of MAS suggests, the behavior of MAV 
teams is governed by a distributed control system, rather than 
by a centralized one. Central controllers are generally 
considered faster and more efficient solutions when compared 
to distributed alternatives. But designing effective cooperative 
strategies for teams composed of many autonomous, 
unmanned vehicles could be a very hard task, as demonstrated 
for example by the works of Hussain [14] and Gaudiano [15]. 
Furthermore, distributed control provides a number of 
advantages. In particular, its non-critical reliance on any 
specific element can in turn guarantee increased reliability, 
safety, and – according to Wu [16] - even speed of response to 
the entire system. Richards and colleagues [5], in their 
systematic review of the numerous approaches to the 
development of centralized and distributed control systems for 
teams of unmanned vehicles, propose a useful classification of 
different methodologies. The approach we will follow is based 
on what they have identified as “reactive strategies”. This 
implies that no central controllers are used and MAVs do not 
have to deal with any specific and pre-calculated flight path. 
The course of action they will undertake entirely relies on the 
mixture of low-level information gathered from the 
environment using their sensors, and information coming from 
different sources. 

The work on MAV teams has some similarity with the 
swarm robotics approach such as those based on the concepts 
of flocking and swarming applied to autonomous aircraft (see 
for example [17]). In the simulations we describe here, 
instead, none of the essential traits of swarm behaviour are 
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replicated. MAVs belonging to the same team are typically 
spread along the environment, not acting, even from a 
graphical point of view, as flocks of birds. At the same time 
they cannot rely on the fundamental rules of swarm/flock 
behaviour, which can be resumed as (1) separation, (2) 
alignment, and (3) cohesion. 

II. OVERVIEW OF PREVIOUS WORK 
The proposed approach based on the combination of ER and 

MAS methodologies was initially tested using a simple 2D 
scenario [18][19]. In the previous study, the simulated 
environment represented part of the Canary Wharf district in 
London, UK. An outline of the main buildings and skyscrapers 
present inside that area was included, and they were perceived 
as obstacles by the MAVs. The MAVs’ task consisted in a 
classic “search and hit” scenario in the context of urban 
counter-terrorism. A target, which might corresponds to an 
enemy person or a vehicle, is deployed in a random position 
inside the reference area. A MAV team, composed by four 
unmanned aircraft starting each from different positions, has 
to navigate through the environment to reach the target and 
finally neutralize it performing a detonation (which also 
causes the loss of the individual MAV). 

 

 
Fig. 1. Graphical representation of the basic neural network controller used for 
the 2D model. The input layer, on the left, contains three neurons encoding the 
horizontal angle separating the MAV and the target (Ψi), the distance (d) 
between the MAV and the target and the ultra-sonic perceptions (ω) of 
obstacles. Between the input and the output layer there is a layer made of 15 
continuous neurons, activated by a tan-sigmoid function. The output layer, on 
the right, contains instead the neuron generating yaw (Ψo), plus the one 
dedicated to the detonation of the aircraft (det.) [B: Boolean, D: discrete, C: 
continuous] 

 
The agents’ behavior is governed by a three-layered fully 

connected feed-forward neural network (Figure 1). The 
controller receives sensorial inputs from the environment and 
in turn triggers the appropriate motor answer. Even though 
each individual MAV is endowed with its own neural 
controller, they all share the same connection weights and 
biases: they are, in fact, clones of each other. 

Automatic Target Acquisition (ATA) is not provided to the 
MAVs. The assumption behind the MAV navigation system 
relies on the presence of a satellite-based target-tracking 
system able to monitor the target and broadcast real-time 
information about its position to all the MAVs engaged in the 
task. The goal of the MAV’s neural controller is to exploit this 

information, combined with local low-level knowledge 
directly gathered by the embodied sensors, in order to find its 
way to the target. 

The results obtained with 2D simulations demonstrated the 
validity of the chosen approach for different kinds of task. 
Particularly, four incremental experiments were carried out. In 
the basic scenario, the buildings are considered as a sort of 
“no-fly zones” for the MAVs. Agents can detect buildings, as 
well as the environment boundaries, the teammates and the 
target, via embodied ultra-sonic sensors. If a MAV attempts to 
fly over one of those areas its test ends at that point. In the 
second scenario, the target is a more “robust” one, as it 
requires two consecutive (i.e., taking place within a limited 
amount of time) hits to be neutralized. In the third and fourth 
scenarios, we introduced a moveable target, able to move 
away from the approaching MAVs. In order to be neutralized, 
the target has respectively to be attacked individually or 
cooperatively as in the two previous setups. 

The neural architecture shown in Figure 1 has required 
slightly modifications to deal with the different input/output 
setups. 

For all the experiments just outlined the evolutionary 
process applied on the MAVs has been able to identify 
optimal solutions. At the end of the evolution, the success 
rates obtained on the first three scenarios were particularly 
positive. MAV teams were able to reach a success rate 
(intended as the average of tests concluded successfully for the 
members of the last generation) of 93.46%, 87.18%, and 73% 
respectively. The fourth scenario only (target able to escape 
and requiring a cooperative attack to be eliminated) produced 
relatively limited results (41.28% tests succeeded). 

III. DESCRIPTION OF THE NEW 3D MODEL 
The new work reported in this paper focuses on the 

extension of the original 2D model to a 3D simulator. This 
will also require an extension of the number of degrees of 
freedom (DOF) involved in the evolutionary and neural 
control process. 

 

 
Fig. 2. The degrees of freedom available to a typical fixed-wing aircraft 

 
The new 3D model introduces two new DOFs. In the 

previous simulator, MAVs were only able to rotate their body 
clockwise or counter-clockwise, while constrained to move 
along their heading direction at every time step. They were 
essentially relying on a single DOF. The 3D aircraft we are 
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now modeling in the 3D environment is instead able to rotate 
along three different axes. If we consider an orthogonal axis 
system fixed on the aircraft and constrained to move with it 
(what is sometimes defined as “body axis system”), the 
rotations that are possible to the MAVs can be respectively 
defined as yaw, pitch, and roll. In details: yaw corresponds the 
rotation of the aircraft around its vertical axis; pitch is the 
rotation around the side-to-side axis; roll refers to the rotation 
around the front-to-back axis. Figure 2 shows the rotation axis 
of the aircraft described above (for a more accurate description 
of the systems of axes and notations used in flight dynamics, 
see for example [20]). 

The use of a 3D simulator involves an additional issue in 
the domain of autonomous controllers for aircraft. The issue is 
terrain avoidance (see for example [21]), and it represents a 
key capability that should be provided to MAVs along with 
obstacle avoidance. The ability of the MAVs to rotate around 
their horizontal axis (pitch) causes their altitude to change 
with time. For the sake of simplicity, the scenario used for this 
simulation is assumed as a flat ground plane located at the sea 
level. Though an explicit control strategy for terrain avoidance 
is not planned in the model, as we will see later the MAVs 
will acquire this ability as a side product of the evolutionary 
process. MAVs have to be able to avoid crashing into the 
ground, but also must not fly at an excessive height. The 
simulator, in fact, will consider “lost”, without any 
distinctions, all the aircraft exiting from the bottom or top 
boundaries of the environment. 

The environment simulated in the 3D model measures 1,000 
(X) x 750 (Y) x 600 (Z) graphical units (GU). The target is 
represented by a sphere with 15 GU radius. All the MAVs 
have the identical shape and size with length of 5 GU and 
wingspan of 3.5 GU. 

The task in this new simulator is the same as before. A 
certain number of MAVs – all members of the same team, but 
starting from different positions - have to navigate through the 
environment, reach a certain target deployed inside a central 
area (without exiting the environment boundaries) and then 
perform a detonation in order to neutralize it. The test is 
considered successfully when the detonation happens within a 
15 GU distance from the target. If all MAVs “die” without 
having neutralized the target, the test is considered failed. In 
addition to losing an aircraft because it has self-detonated or 
has exited the environment boundaries, during a test a MAV 
can also die if it runs out of energy or if it collides against a 
teammate. 

A. Neural network controller 
Our research relies on neural network controllers developed 

through ER methodologies [1]. This implies that a set of 
sensors "embodied" on the MAVs have to continuously gather 
information from the surrounding environment and from the 
aircraft itself in order to autonomously trigger the most 
appropriate behaviour. 

The controller we have designed is based on a feed-forward 
neural network, constituted by one input and one output layers 
(a graphical representation of this architecture is provided in 

Figure 3). The input layer receives five chunks of information: 
(1) horizontal angle between the MAV and the target, (2) 
current pitch angle, (3) current roll angle, (4) delta height 
compared to the target, and (5) distance to the target. The 
output layer provides instead the effectors of the MAV’s 
behaviour: (1) yaw, (2) pitch, (3) roll, and (4) detonation. 

The two layers are not fully connected. While the neural 
modules dedicated to modify the MAV flight trajectory (i.e., 
yaw, pitch and roll) receive their incoming connections from 
all the input neurons, the module dedicated to the detonation 
only receives information about the distance between the 
MAV and the target.  

 

 
Fig. 3. Graphical representation of the neural network controller used for the 
3D model. The input layer, on the left, contains four neurons encoding the 
horizontal angle separating the MAV and the target (Ψi), the MAV’s pitch and 
roll angles (θi and Φi respectively), the delta height (Δh) and the distance (d) 
between the MAV and the target. The output layer, on the right, contains 
instead the neurons generating yaw, pitch and roll (Ψo, θo, and Φo), plus the 
one dedicated to the detonation of the aircraft (det.) 

 
Each controller is characterised by 25 connection weights 

and 4 biases (each of them applied to one of the output layer’s 
units). All the neurons belonging to the input layer do not have 
any bias and use an identity transfer function, which does not 
modify the values set in input. The information fed to the 
network is processed according to the connection weights and 
then passed to output layer. The output neurons that manage 
yaw/pitch/roll produce a continuous output value. They are 
activated according to a tan-sigmoid function (slope 1.0), 
which outputs are in the range [-1.0; +1.0]. The output unit 
dedicated to the detonation is instead a Boolean one activated 
by a step function with a 0 threshold. When it turns into 1 the 
MAV detonates, while nothing happens when the value of this 
neuron is 0. 

For measuring pitch and roll angles (also referred to as 
“attitude”) we have chosen a right handed axis system. This 
means that positive pitch is nose up and positive roll is right 
wing down. The correlation between the output values 
generated by the controller and the effects played on the 
aircraft is 1-to-1. During each time step a MAV can therefore 
perform a yaw between -1.0 (nose left) and +1.0 (nose right), a 
pitch between -1.0 (nose down) and +1.0 (nose up), and a roll 
ranging from -1.0 (left wing down) and +1.0 (right wing 
down) degrees. The 0 output does not generate any change to 
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the current aircraft’s attitude. In order to make the modeled 
MAVs as flexible as possible in their movements, we have 
decided to implement roll as an independent component of 
flight motion. This approach differs for example by what 
Watson and colleagues [17] have proposed by associating roll 
with yaw, where when the aircraft performs a yaw, it performs 
a correspondent roll also, with an intensity calculated 
according to a certain formula. 

B. Inputs calculation and discretisation algorithms 
As already pointed out in previous work and confirmed by 

the preliminary analyses carried out using the new 3D model, 
in this particular experimental scenario the neural network 
controllers have demonstrated to perform better when the 
input units receive discrete rather than continuous values. The 
discretisation algorithms applied on the continuous variables 
collected by the MAVs’ sensors assume therefore a 
fundamental role. 

The most important information that the controllers have to 
process in order to adjust the flight trajectory of the MAVs are 
those received by the external target-tracking system: distance 
and horizontal angle from the target. 

The distance between the MAV and the target is simply 
calculated as the Euclidean distance between their respective 
centre points. Then the discretisation process takes place 
reducing the original value to one out of nineteen discrete 
values, according to Table I. Consider that a distance 
compatible with the aircraft’s detonation range is discretised 
as 1.0, while bigger distances correspond to values ranging 
from 0.95 to 0.10 with steps 76.19 long. The maximum 
distance between two points, inside this environment, is 
1,386.54 GU. 
 

TABLE I 
DISCRETISATION TABLE FOR d 

Original distance (d) Discretised distance 

0 <= d <= 15.0 1.0 
15.0 < d <= 91.19 0.95 

91.19 < d <= 167.38 0.90 
167.38 < d <= 243.57 0.85 

… … 
1,310.23 < d <= 1,386.54 0.10 

 
The horizontal angle between the MAV’s heading direction 

and the target is obtained projecting the two objects on the 
same two-dimensional surface. In other words, we assume that 
they are at the same height and that the MAV’s pitch angle is 
0. This measure is 0 when the MAV is heading the target. The 
value increases counter-clockwise, tending to 360. The neural 
network input consists of four Boolean neurons, encoding via 
a Gray Code system the angle calculated through the above 
procedure (see Table II). 

Sensors embodied on the aircraft to date are limited to those 
encoding basic information such as current height, and pitch 
and roll angles. 

Delta height is calculated as the difference between the 
current height of the target and the height of the MAV, both 

measured according to their centre points. The resulting value 
is therefore negative when the robot is flying over the center 
of the target (and needs to reduce its altitude through a 
negative pitch), positive vice-versa. In this way there is an 
immediate correspondence between the input received by the 
network and the output that it has to produce in response. 

 
TABLE II 

DISCRETISATION TABLE FOR ψ 

Original horizontal angle 
(ψ) 

Discretised horizontal 
angle 

0 <= ψ <= 11.25 
348.75 <= ψ <= 0 0 0 0 0 

11.25 < ψ<= 33.75 0 0 0 1 
33.75 < ψ <= 56.25 0 0 1 1 
56.25 < ψ <= 78.75 0 0 1 0 
78.75 < ψ <= 101.25 0 1 1 0 

101.25 < ψ <= 123.75 0 1 1 1 
123.75 < ψ <= 146.25 0 1 0 1 
146.25 < ψ <= 168.75 0 1 0 0 
168.75 < ψ <= 191.25 1 1 0 0 
191.25 < ψ <= 213.75 1 1 0 1 
213.75 < ψ <= 236.25 1 1 1 1 
236.25 < ψ <= 258.75 1 1 1 0 
258.75 < ψ <= 281.25 1 0 1 0 
281.25 < ψ <= 303.75 1 0 1 1 
303.75 < ψ <= 326.25 1 0 0 1 
326.25 < ψ < 348.75 1 0 0 0 

 
The normalization algorithm considers irrelevant a 15 GU 

distance. Values bigger than 15 and less than -15 are 
discretised according to Table III. 

 
TABLE III 

DISCRETISATION TABLE FOR Δh 

Original delta height (Δh) Discretised delta height 

-15.0 <= Δh <= 15.0 0.0 
15.0 < Δh < 73.5 0.1 

73.5 < Δh < 132.0 0.2 
… … 

541.5 < Δh <= 584.0 1.0 
-73.5 < Δh < -15.0 -0.1 

-132.0 < Δh < -73.5 -0.2 
… … 

-584.0 <= Δh < -541.5 -1.0 

 
TABLE IV 

DISCRETISATION TABLE FOR θ AND Φ 

Original pitch/roll angle 
(θ || Φ) 

Discretised pitch/roll 
angle 

-2.0 <= (θ || Φ) <= 2.0 0.0 
2.0 < (θ || Φ) < 18.0 0.1 

18.0 < (θ || Φ) < 36.0 0.2 
… … 

162.0 < (θ || Φ) <= 180.0 1.0 
-18.0 < (θ || Φ) < -2.0 -0.1 

-36.0 < (θ || Φ) < -18.0 -0.2 
… … 

-180.0 <= (θ || Φ) < -162.0 -1.0 

 
Finally, current pitch and roll angles are discretised at the 

same way, according to Table IV. We have opted for a right 
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handed system, therefore pitch angle is positive when the 
MAV’s nose is facing up, negative when it is facing down. 
The same applies for the roll angle. Its value is positive when 
the aircraft’s right wing is lower than the left one, negative in 
the opposite case. Both discretised pitch and roll angles have 
value 0 when the variations from the “equilibrium state” (i.e., 
the MAV’s front-to-back axis parallel to the ground and not 
rolled) are smaller than 2 degrees. 

IV. PRELIMINARY RESULTS 
The results described in this section refer to the 3D 

experimental setup based on the parameters listed below. 
Each MAV’s movement is 3 GU long and cost 1 energy 

unit. The flying speed is assumed as constant, it cannot be 
modified during flight and cannot therefore affect the energy 
consumption. The energy stored into each MAV amounts to 
1,000 fuel units (FU). MAVs can therefore fly for 3,000 GU.  

An initial population of 100 teams is created. When the 
simulation begins, the individuals’ genotypes (each connection 
weight and bias in the neural network) are created with 
random values in the range [-5.0; +5.0]. All agents within a 
team are genetic clones, thus sharing the same genotype. 

Each team is formed by 4 MAVs. A team is tested for 8 
epochs. At the beginning of each epoch, the target is randomly 
placed in a different position, always 15 GU above the ground 
level. All the MAVs belonging to the same team are deployed 
inside this environment, in different starting positions close to 
the four environment corners and facing the centre of the 
cuboidal arena (with some random noise added to alter their 
initial position). 

The fitness formula used for driving the evolutionary 
process has been kept as simple as possible: 

 
  (1) 

 
where: α is the average distance (measured in GU) between 

the target and the team member detonated closest to it, 
calculated basing on the various tests; β is the average amount 
of energy retained by the MAV detonated closest to the target 
during each test. If no MAVs detonate during the entire sets of 
test epochs (which is a condition that could frequently happen 
during the first stages of evolution), the values of α and β are 
manually set to 1,386.54 and 0 respectively. 

At the end of each generation, the 10 teams that have scored 
the best performances according to the fitness formula are 
selected for reproduction. Every parent team generates 9 
offspring teams, which inherit the same genotype. For each 
new team, a mutation process is applied. All the connection 
weights and biases are affected, with probability 0.2, by the 
addition of a random value included within the range [-1.0; 
+1.0]. Elitism is also applied, so the first offspring of the best 
individual within a given generation is not affected by any 
kind of modifications of its genome and is kept in the next 
population as it is. 

The entire process is iterated for 350 generations. Five 
different replications (i.e. same simulation with different 

initial random genotypes at generation 0) are carried out. The 
results reported here are averaged across the five replications 
in order to identify a general evolutionary trend. 

The charts below provide a summary of the results 
generated by the evolutionary process. 

 
Fig. 4. Average and maximum fitness during the 350 generations 

 
In Figure 4 we can see how average and maximum fitness 

increase generation by generation, until reaching what looks 
like a steady state after 300 generations. As expected, both 
lines start from low fitness levels (for the first 50 generations 
the average fitness is negative, indicating that the “average 
team” is not yet able to perform the desired task) and then 
quickly increase. 

 
Fig. 5. Average and minimum distance between the target and the detonation 
point of the MAVs detonated closest to it 

 
As mentioned above, the fitness formula used for evaluating 

the performance of a MAV team has two main components. 
The first is the average distance between the target and the 
MAV detonated closest to it, during the 8 tests carried out for 
each team. Figure 5 shows how the minimum average distance 
(i.e., the one scored by the best swarm averaging the 8 tests 
carried out) reaches a steady state after few generations. The 
line representing the average for the entire population is 
instead more jagged and decreases more slowly. The second 
component of the fitness formula is the amount of energy 
retained by the MAVs that have neutralized the target, 
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averaged for all the successful tests performed. This parameter 
has been included into the fitness formula with the purpose of 
creating a discriminatory effect whenever most of the MAV 
teams would have been able to correctly reach and neutralize 
the target. The idea is to favour those teams able to perform 
the task faster than other members of the population. We were 
therefore expecting a curve characterised by values increasing 
generation by generation (or at least starting to increase after 
that the average success rate for the entire population has 
exceeded a certain threshold). The results presented in Figure 
6 show how this expected phenomena in fact does not take 
place. This is presumably due to the amount of generations 
evolved, which is too limited for this trend to appear.  

 
Fig. 6. Average amount of energy retained by the MAV eliminating the target  
 

It is interesting to note that even if the fitness graph 
suggests that the evolution has reached a steady stable, in 
reality this is not the case. Looking at Figure 7 it becomes 
obvious that the evolutionary process is still going on. What is 
happening is that the entire population is converging to the 
optimum point individuated by the evolutionary algorithm. 
This phenomenon might results difficult to see in Figures 4 
and 5, but it is clearly observed in Figure 7. 

 
Fig. 7. Percentage of tests concluded successfully 

 
Finally, Figure 8 shows a difference emerging from the new 

simulations compared to what was happening with the 2D 
simulator. In the previous 2D model, during the first 

generations MAVs used to detonate immediately at the 
beginning of each test. Then gradually, generation by 
generation, the percentage of aircraft detonating reduced, 
tending to the expected value of 1. Now the process takes 
place in the opposite way. During the first generations most of 
the MAVs end the various tests exiting by accident from the 
environment boundaries. This proportion slowly diminishes, 
while the average number of MAVs detonating within each 
team increases as expected. 

 
Fig. 8. End-test condition for the members of the "average" swarm. The plot 
shows, during a typical test, how many MAVs detonate, exit from the 
environment boundaries, run out of energy, collide against a team-member, or 
survive 
 

The effect described above is probably due to the size of the 
environment, which - although adding a new dimension - is 
relatively smaller than the one used for carrying out the 2D 
simulations, thus resulting in MAVs that can exit more easily 
from the environment boundaries. 

V. DISCUSSION AND CONCLUSION 
When we consider the validity of this work for real MAVs 

control, it is fundamental to consider that this simulation 
model intentionally uses a high level perspective, i.e. focuses 
on generic flight navigation dynamics, and navigation and 
search strategy. At this preliminary stage, we are not interested 
in studying low-level aspects of the MAVs’ physical 
interactions, such as considering air resistance on specific 
aircraft configurations. We aim to provide the agents with 
realistic, general flight dynamics that a real aircraft could 
effectively reproduce. It will be part of future work, in 
particular for aircraft engineering, to focus on the design of 
robotic MAV platforms capable of accurately translating 
controller’s decisions into proper commands for the aircraft. 

One of the main contributions of this model is to propose 
the use of combined ER and MAS systems for the distributed 
control and coordination of autonomous flying agents. One of 
the reasons behind the lack of progress in this area could be 
due to the absence of a cheap and reliable robotic platform to 
be used for MAV flying experiments. It is undisputable that 
the initial success of the ER field has been greatly due to the 
development and availability of easy reach robot platforms 
such as Khepera [22]. This has allowed researchers to test 
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computer-elaborated behaviours on a physical robot facing the 
full complexity of the real world2. However, a potentially 
important development in the area of ER and flying behavior 
is the contribution by Thomas and colleagues [23], who have 
recently presented a test-bed flying vehicle that could 
potentially fill this gap. The idea behind their work consists in 
installing inexpensive commercial off-the-shelf components 
on a basic radio controlled airplane in order to transform it to 
an autonomous vehicle. They have employed two devices 
manufactured by Crossbow®, namely the MNAV (a solid 
state micro-electro-mechanical system unit that incorporates 
three-axes measurement of acceleration and angular rates, 
along with magnetometers, barometric pressure sensors, three-
axis temperature sensors, and an integrated GPS receiver) and 
the Stargate (a single board computer running a 400MHz 
processor, which can support a 802.11 Wi-Fi network card). In 
their case, software running on a laptop computer wirelessly 
connected to the aircraft makes possible to communicate with 
it, receiving telemetry data and uploading new flight paths. 
Even if this approach does not constitute a significant element 
of novelty, it demonstrates how current technologies are 
mature for the development of a new “flying Khepera”. Once 
an affordable platform can be identified, carefully tested and 
adopted as a standard by researchers across the world, the 
investigations on the area of development of autonomous 
controllers for flying robots through ER methodologies could 
potentially register a significant boost. 

When we compare ER for ground and air robotics, another 
issue to consider is safety and robustness. A flying robot is 
necessarily less resistant than a ground-based one and exposed 
to bigger risks during experiments. While a Khepera can 
harmlessly hit a wall if provided with a wrong instruction by 
the controller, a MAV could instead crash on the ground 
seriously compromising its functionality. And an additional 
issue related to this is the need of ample lab space required for 
carrying out flying experiments. Small ground-based robots 
typically used in ER do not require much room, since 
experiments involving this kind of platforms are frequently 
carried out inside small squared arenas with a few meters side. 
Aircraft generally need instead a much bigger area in order to 
work properly. These two points have in turn both a financial 
and a practical impact on the research and they have to be 
taken into account since they cannot be excluded. 

VI. FUTURE WORK 
Plans for future work consider four main directions of 
research. 

A. Introduction of obstacles 
In order to replicate all the results obtained with the 2D 

simulations, the next step will consist in extending the new 
model and add 3D obstacles such as buildings. MAVs will 

 
2 At the same time, developing a computer simulator aimed to flying robots 

presents issues definitely more complex than the ones coming from the 
development of a simulator for ground-based robots. The Khepera’s success 
has been strongly helped by the availability of good computer simulators. 

have to be provided with embodied sensors capable of 
detecting the presence of those obstacles. These sensors need 
to be added to the three used in the old 2D simulator. A 
tentative solution consists in using nine sensors configured as 
shown in Figure 9. 

 
Fig. 9. Isometric side and front views that show how the ultra-sonic sensors 
could be deployed on the MAVs 

B. Cooperation and language 
Previous work has considered tasks requiring explicit 

cooperation between teammates. It has been demonstrated 
how the introduction of extremely simple forms of implicit 
communication could allow cooperative behaviours to evolve 
without requiring the pre-design of a cooperative strategy.  

Future investigations along this direction will focus on the 
introduction of various forms of communication between 
teammates (from explicit, pre-defined communication 
protocols, to self-organizing signaling systems). The purpose 
of adding communication capabilities can clarify how direct 
and local agent-agent communication could lead to a better 
level of coordination between the MAVs, and in turn allowing 
the teams to increase their effectiveness in performing 
complex tasks. The approach toward the evolution of self-
organising communication systems will be based upon symbol 
grounding theory as elaborated by Cangelosi et al. [24]. 

C. Provide the controller with short-term memory 
During the last decades, many different methods to add 

short-term memory to a perceptron architecture have been 
proposed (see for example the widely used Elman networks 
[25]). This principle, applied to the development of neural 
autonomous controllers for robots, has proven to be 
particularly beneficial for navigation tasks within unknown 
environments [26]. Future work will consider the introduction 
of memory structures into the agents’ controllers. Since the 
neural architecture we are using in the current 3D model does 
not include any hidden layer, future work will focus on the 
implementation of a Jordan network [27]. A set of context 
units will be then added to the neural network, reintroducing at 
time t+1 the values produced by the output units at time t. 

D. Multi-threading 
The amount of time requested by the computer simulator to 

perform the evolutionary process represents a serious issue 
that has to be solved. The C++ code on which the simulator is 
based on has already been optimized at the best of our 
knowledge, disabling graphics rendering during the 
evolutionary process, using simplified functions for collisions 
detection, etc. Nonetheless, each simulation replica elaborated 
and presented herein has required an average of about 60 
hours of computation to evolve the relatively modest amount 
of 350 generations. Although the evolutionary algorithms 
slowness in converging toward an optimal solution represents 
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a common concern in ER, in this case there should be an edge 
for improvement. On the basis of the actual trend in computer 
science, looks like the most promising approach toward 
optimization involves the introduction of multi-threading 
principles. Future work will therefore include the 
transformation of the developed simulator from a single-
threading to a multi-threading application. In our lab, this 
improvement will make possible to fully benefit from the 
employment of P-ARTS (Plymouth Advanced Robot Training 
Suite), a powerful computer cluster recently awarded by our 
research group as part of the Apple® PARTS program. 

Finally, it is interesting to consider another aspect related to 
simulation speed. In both the models described in this paper 
all the MAVs belonging to a certain team share the same 
controller, so it is essentially a single controller that evolve. If 
we do not take into account complex setups as those requiring 
communication and/or involving a “robust” target, it might 
look feasible to evolve teams made by only one MAV each in 
order to shorten the amount of time required by the 
evolutionary process. What immediately appears looking at 
Figure 10 is that the advantages coming from the use of a 
single MAV (which roughly reduces the computational efforts 
by one fourth if compared to the scenarios described herein) 
are more than mitigated by the massively larger number of 
generations required in order to evolve the desired behaviour. 

 
Fig. 10. Percentage of tests concluded successfully for a MAV team made of a 
single member. As it is possible to see into the plot, the success rate merely 
reaches a maximum of 6% in 500 generations 

 
What happens is quite reasonable. During the first 

generations, in fact, MAVs approach and neutralize the target 
purely by chance. Then this evolutionarily advantageous 
behaviour improves and spread among the entire population. 
The more MAVs are employed, the more likely is that this 
process will take place since the very first generations. The 
likelihood of succeeding in the task is in fact positively 
correlated with the team size. The experiments carried out 
have demonstrated how the selection of a proper team-size is 
an important aspect to consider. 
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