
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract — This paper describes the approach we are

following for using an evolutionary Multi-Agent System (MAS)
for the control of teams of autonomous Micro-unmanned Aerial
Vehicles (MAVs). Experiments previously carried out using a
simple 2D model have demonstrated how the combination of
MAS and Evolutionary Robotics (ER) methodologies can in
principle be exploited for the development of a distributed
control system for flying robots. The computer simulations have
resulted in controllers evolved with the following capabilities: (1)
navigation through unknown environments, (2) obstacle-
avoidance, (3) tracking of a movable target, and (4) execution of
cooperative and coordinated behaviours based on implicit
communication strategies. In order to improve the robustness of
results and their potential use in real MAV teams, a new 3D
simulator was developed. This new simulation model mostly
captures the essential flight dynamics in a 3D urban
environment. The initial results obtained with the new 3D
simulator demonstrate the feasibility of the approach. Simulation
experiments demonstrate that evolutionary process successfully
leads to the development of controllers for the search and hit
tasks. Future work will focus on further extensions of this model
to investigate the processes involved in communication and
coordination between autonomous MAVs.

Index Terms — Multi-Agent Systems, Evolutionary Robotics,
Neural Networks, MAVs.

I. INTRODUCTION
volutionary Robotics (ER) [1] uses genetic algorithms to
evolve the neural controller of autonomous robots.

Numerous studies based on ER have focused on ground-based
navigation and exploration tasks [2]. More recently, the ER
approach has been employed to domains other than ground-
based robots, such as underwater autonomous vehicles [3].

The application of ER methodologies for air navigation and
control is still at its infancy. Current approaches to the
development of autonomous controllers for aircraft mainly
rely on theoretical tools other than ER. Methodologies
generally adopted are behavior-based robotics [4], genetic
programming [5] evolution-based path planning [6], modeling

Manuscript received May 1st, 2009. Effort sponsored by the Air Force

Office of Scientific Research, Air Office Material Command, USAF, under
grant number FA8655-07-1-3075.

All authors are with the Adaptive Behaviour and Cognition Research
Group, School of Computing, Communications and Electronics, University of
Plymouth, Drake Circus, Plymouth, PL4 8AA, UK (phone: +44 (0)1752
586288; e-mail: fabio.ruini@plymouth.ac.uk).

field theory [7], classic graph search methods (such as A*[8]),
and – rarely - neural networks [9][10]. Only recently, with the
work carried out at the EPFL [11], a proper ER approach has
been taken into account for the development of the whole
evolutionary control system for a group of autonomous flying
robots.

The work presented herein aims at the extension of ER
techniques for unmanned aircrafts. In particular, our research
focuses on teams of autonomous Micro-unmanned Aerial
Vehicles (MAVs) [12] engaged on a “search and hit” task
within an urban environment. The approach we have decided
to follow relies on computer simulations developed through
the mixture of Evolutionary Robotics (ER) and Multi-Agent
Systems (MAS) methodologies (see [13] for an overview).
Work at this stage will only be based on simulations.

As the adoption of MAS suggests, the behavior of MAV
teams is governed by a distributed control system, rather than
by a centralized one. Central controllers are generally
considered faster and more efficient solutions when compared
to distributed alternatives. But designing effective cooperative
strategies for teams composed of many autonomous,
unmanned vehicles could be a very hard task, as demonstrated
for example by the works of Hussain [14] and Gaudiano [15].
Furthermore, distributed control provides a number of
advantages. In particular, its non-critical reliance on any
specific element can in turn guarantee increased reliability,
safety, and – according to Wu [16] - even speed of response to
the entire system. Richards and colleagues [5], in their
systematic review of the numerous approaches to the
development of centralized and distributed control systems for
teams of unmanned vehicles, propose a useful classification of
different methodologies. The approach we will follow is based
on what they have identified as “reactive strategies”. This
implies that no central controllers are used and MAVs do not
have to deal with any specific and pre-calculated flight path.
The course of action they will undertake entirely relies on the
mixture of low-level information gathered from the
environment using their sensors, and information coming from
different sources.

The work on MAV teams has some similarity with the
swarm robotics approach such as those based on the concepts
of flocking and swarming applied to autonomous aircraft (see
for example [17]). In the simulations we describe here,
instead, none of the essential traits of swarm behaviour are

Evolutionary Multi-Agent Systems as a
Methodology for Developing Autonomous

Controllers for MAV Teams
Fabio Ruini, Angelo Cangelosi1

E

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

replicated. MAVs belonging to the same team are typically
spread along the environment, not acting, even from a
graphical point of view, as flocks of birds. At the same time
they cannot rely on the fundamental rules of swarm/flock
behaviour, which can be resumed as (1) separation, (2)
alignment, and (3) cohesion.

II. OVERVIEW OF PREVIOUS WORK
The proposed approach based on the combination of ER and

MAS methodologies was initially tested using a simple 2D
scenario [18][19]. In the previous study, the simulated
environment represented part of the Canary Wharf district in
London, UK. An outline of the main buildings and skyscrapers
present inside that area was included, and they were perceived
as obstacles by the MAVs. The MAVs’ task consisted in a
classic “search and hit” scenario in the context of urban
counter-terrorism. A target, which might corresponds to an
enemy person or a vehicle, is deployed in a random position
inside the reference area. A MAV team, composed by four
unmanned aircraft starting each from different positions, has
to navigate through the environment to reach the target and
finally neutralize it performing a detonation (which also
causes the loss of the individual MAV).

Fig. 1. Graphical representation of the basic neural network controller used for
the 2D model. The input layer, on the left, contains three neurons encoding the
horizontal angle separating the MAV and the target (Ψi), the distance (d)
between the MAV and the target and the ultra-sonic perceptions (ω) of
obstacles. Between the input and the output layer there is a layer made of 15
continuous neurons, activated by a tan-sigmoid function. The output layer, on
the right, contains instead the neuron generating yaw (Ψo), plus the one
dedicated to the detonation of the aircraft (det.) [B: Boolean, D: discrete, C:
continuous]

The agents’ behavior is governed by a three-layered fully

connected feed-forward neural network (Figure 1). The
controller receives sensorial inputs from the environment and
in turn triggers the appropriate motor answer. Even though
each individual MAV is endowed with its own neural
controller, they all share the same connection weights and
biases: they are, in fact, clones of each other.

Automatic Target Acquisition (ATA) is not provided to the
MAVs. The assumption behind the MAV navigation system
relies on the presence of a satellite-based target-tracking
system able to monitor the target and broadcast real-time
information about its position to all the MAVs engaged in the
task. The goal of the MAV’s neural controller is to exploit this

information, combined with local low-level knowledge
directly gathered by the embodied sensors, in order to find its
way to the target.

The results obtained with 2D simulations demonstrated the
validity of the chosen approach for different kinds of task.
Particularly, four incremental experiments were carried out. In
the basic scenario, the buildings are considered as a sort of
“no-fly zones” for the MAVs. Agents can detect buildings, as
well as the environment boundaries, the teammates and the
target, via embodied ultra-sonic sensors. If a MAV attempts to
fly over one of those areas its test ends at that point. In the
second scenario, the target is a more “robust” one, as it
requires two consecutive (i.e., taking place within a limited
amount of time) hits to be neutralized. In the third and fourth
scenarios, we introduced a moveable target, able to move
away from the approaching MAVs. In order to be neutralized,
the target has respectively to be attacked individually or
cooperatively as in the two previous setups.

The neural architecture shown in Figure 1 has required
slightly modifications to deal with the different input/output
setups.

For all the experiments just outlined the evolutionary
process applied on the MAVs has been able to identify
optimal solutions. At the end of the evolution, the success
rates obtained on the first three scenarios were particularly
positive. MAV teams were able to reach a success rate
(intended as the average of tests concluded successfully for the
members of the last generation) of 93.46%, 87.18%, and 73%
respectively. The fourth scenario only (target able to escape
and requiring a cooperative attack to be eliminated) produced
relatively limited results (41.28% tests succeeded).

III. DESCRIPTION OF THE NEW 3D MODEL
The new work reported in this paper focuses on the

extension of the original 2D model to a 3D simulator. This
will also require an extension of the number of degrees of
freedom (DOF) involved in the evolutionary and neural
control process.

Fig. 2. The degrees of freedom available to a typical fixed-wing aircraft

The new 3D model introduces two new DOFs. In the

previous simulator, MAVs were only able to rotate their body
clockwise or counter-clockwise, while constrained to move
along their heading direction at every time step. They were
essentially relying on a single DOF. The 3D aircraft we are

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

now modeling in the 3D environment is instead able to rotate
along three different axes. If we consider an orthogonal axis
system fixed on the aircraft and constrained to move with it
(what is sometimes defined as “body axis system”), the
rotations that are possible to the MAVs can be respectively
defined as yaw, pitch, and roll. In details: yaw corresponds the
rotation of the aircraft around its vertical axis; pitch is the
rotation around the side-to-side axis; roll refers to the rotation
around the front-to-back axis. Figure 2 shows the rotation axis
of the aircraft described above (for a more accurate description
of the systems of axes and notations used in flight dynamics,
see for example [20]).

The use of a 3D simulator involves an additional issue in
the domain of autonomous controllers for aircraft. The issue is
terrain avoidance (see for example [21]), and it represents a
key capability that should be provided to MAVs along with
obstacle avoidance. The ability of the MAVs to rotate around
their horizontal axis (pitch) causes their altitude to change
with time. For the sake of simplicity, the scenario used for this
simulation is assumed as a flat ground plane located at the sea
level. Though an explicit control strategy for terrain avoidance
is not planned in the model, as we will see later the MAVs
will acquire this ability as a side product of the evolutionary
process. MAVs have to be able to avoid crashing into the
ground, but also must not fly at an excessive height. The
simulator, in fact, will consider “lost”, without any
distinctions, all the aircraft exiting from the bottom or top
boundaries of the environment.

The environment simulated in the 3D model measures 1,000
(X) x 750 (Y) x 600 (Z) graphical units (GU). The target is
represented by a sphere with 15 GU radius. All the MAVs
have the identical shape and size with length of 5 GU and
wingspan of 3.5 GU.

The task in this new simulator is the same as before. A
certain number of MAVs – all members of the same team, but
starting from different positions - have to navigate through the
environment, reach a certain target deployed inside a central
area (without exiting the environment boundaries) and then
perform a detonation in order to neutralize it. The test is
considered successfully when the detonation happens within a
15 GU distance from the target. If all MAVs “die” without
having neutralized the target, the test is considered failed. In
addition to losing an aircraft because it has self-detonated or
has exited the environment boundaries, during a test a MAV
can also die if it runs out of energy or if it collides against a
teammate.

A. Neural network controller
Our research relies on neural network controllers developed

through ER methodologies [1]. This implies that a set of
sensors "embodied" on the MAVs have to continuously gather
information from the surrounding environment and from the
aircraft itself in order to autonomously trigger the most
appropriate behaviour.

The controller we have designed is based on a feed-forward
neural network, constituted by one input and one output layers
(a graphical representation of this architecture is provided in

Figure 3). The input layer receives five chunks of information:
(1) horizontal angle between the MAV and the target, (2)
current pitch angle, (3) current roll angle, (4) delta height
compared to the target, and (5) distance to the target. The
output layer provides instead the effectors of the MAV’s
behaviour: (1) yaw, (2) pitch, (3) roll, and (4) detonation.

The two layers are not fully connected. While the neural
modules dedicated to modify the MAV flight trajectory (i.e.,
yaw, pitch and roll) receive their incoming connections from
all the input neurons, the module dedicated to the detonation
only receives information about the distance between the
MAV and the target.

Fig. 3. Graphical representation of the neural network controller used for the
3D model. The input layer, on the left, contains four neurons encoding the
horizontal angle separating the MAV and the target (Ψi), the MAV’s pitch and
roll angles (θi and Φi respectively), the delta height (Δh) and the distance (d)
between the MAV and the target. The output layer, on the right, contains
instead the neurons generating yaw, pitch and roll (Ψo, θo, and Φo), plus the
one dedicated to the detonation of the aircraft (det.)

Each controller is characterised by 25 connection weights

and 4 biases (each of them applied to one of the output layer’s
units). All the neurons belonging to the input layer do not have
any bias and use an identity transfer function, which does not
modify the values set in input. The information fed to the
network is processed according to the connection weights and
then passed to output layer. The output neurons that manage
yaw/pitch/roll produce a continuous output value. They are
activated according to a tan-sigmoid function (slope 1.0),
which outputs are in the range [-1.0; +1.0]. The output unit
dedicated to the detonation is instead a Boolean one activated
by a step function with a 0 threshold. When it turns into 1 the
MAV detonates, while nothing happens when the value of this
neuron is 0.

For measuring pitch and roll angles (also referred to as
“attitude”) we have chosen a right handed axis system. This
means that positive pitch is nose up and positive roll is right
wing down. The correlation between the output values
generated by the controller and the effects played on the
aircraft is 1-to-1. During each time step a MAV can therefore
perform a yaw between -1.0 (nose left) and +1.0 (nose right), a
pitch between -1.0 (nose down) and +1.0 (nose up), and a roll
ranging from -1.0 (left wing down) and +1.0 (right wing
down) degrees. The 0 output does not generate any change to

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

the current aircraft’s attitude. In order to make the modeled
MAVs as flexible as possible in their movements, we have
decided to implement roll as an independent component of
flight motion. This approach differs for example by what
Watson and colleagues [17] have proposed by associating roll
with yaw, where when the aircraft performs a yaw, it performs
a correspondent roll also, with an intensity calculated
according to a certain formula.

B. Inputs calculation and discretisation algorithms
As already pointed out in previous work and confirmed by

the preliminary analyses carried out using the new 3D model,
in this particular experimental scenario the neural network
controllers have demonstrated to perform better when the
input units receive discrete rather than continuous values. The
discretisation algorithms applied on the continuous variables
collected by the MAVs’ sensors assume therefore a
fundamental role.

The most important information that the controllers have to
process in order to adjust the flight trajectory of the MAVs are
those received by the external target-tracking system: distance
and horizontal angle from the target.

The distance between the MAV and the target is simply
calculated as the Euclidean distance between their respective
centre points. Then the discretisation process takes place
reducing the original value to one out of nineteen discrete
values, according to Table I. Consider that a distance
compatible with the aircraft’s detonation range is discretised
as 1.0, while bigger distances correspond to values ranging
from 0.95 to 0.10 with steps 76.19 long. The maximum
distance between two points, inside this environment, is
1,386.54 GU.

TABLE I
DISCRETISATION TABLE FOR d

Original distance (d) Discretised distance

0 <= d <= 15.0 1.0
15.0 < d <= 91.19 0.95

91.19 < d <= 167.38 0.90
167.38 < d <= 243.57 0.85

… …
1,310.23 < d <= 1,386.54 0.10

The horizontal angle between the MAV’s heading direction

and the target is obtained projecting the two objects on the
same two-dimensional surface. In other words, we assume that
they are at the same height and that the MAV’s pitch angle is
0. This measure is 0 when the MAV is heading the target. The
value increases counter-clockwise, tending to 360. The neural
network input consists of four Boolean neurons, encoding via
a Gray Code system the angle calculated through the above
procedure (see Table II).

Sensors embodied on the aircraft to date are limited to those
encoding basic information such as current height, and pitch
and roll angles.

Delta height is calculated as the difference between the
current height of the target and the height of the MAV, both

measured according to their centre points. The resulting value
is therefore negative when the robot is flying over the center
of the target (and needs to reduce its altitude through a
negative pitch), positive vice-versa. In this way there is an
immediate correspondence between the input received by the
network and the output that it has to produce in response.

TABLE II

DISCRETISATION TABLE FOR ψ

Original horizontal angle
(ψ)

Discretised horizontal
angle

0 <= ψ <= 11.25
348.75 <= ψ <= 0 0 0 0 0

11.25 < ψ<= 33.75 0 0 0 1
33.75 < ψ <= 56.25 0 0 1 1
56.25 < ψ <= 78.75 0 0 1 0
78.75 < ψ <= 101.25 0 1 1 0

101.25 < ψ <= 123.75 0 1 1 1
123.75 < ψ <= 146.25 0 1 0 1
146.25 < ψ <= 168.75 0 1 0 0
168.75 < ψ <= 191.25 1 1 0 0
191.25 < ψ <= 213.75 1 1 0 1
213.75 < ψ <= 236.25 1 1 1 1
236.25 < ψ <= 258.75 1 1 1 0
258.75 < ψ <= 281.25 1 0 1 0
281.25 < ψ <= 303.75 1 0 1 1
303.75 < ψ <= 326.25 1 0 0 1
326.25 < ψ < 348.75 1 0 0 0

The normalization algorithm considers irrelevant a 15 GU

distance. Values bigger than 15 and less than -15 are
discretised according to Table III.

TABLE III

DISCRETISATION TABLE FOR Δh

Original delta height (Δh) Discretised delta height

-15.0 <= Δh <= 15.0 0.0
15.0 < Δh < 73.5 0.1

73.5 < Δh < 132.0 0.2
… …

541.5 < Δh <= 584.0 1.0
-73.5 < Δh < -15.0 -0.1

-132.0 < Δh < -73.5 -0.2
… …

-584.0 <= Δh < -541.5 -1.0

TABLE IV

DISCRETISATION TABLE FOR θ AND Φ

Original pitch/roll angle
(θ || Φ)

Discretised pitch/roll
angle

-2.0 <= (θ || Φ) <= 2.0 0.0
2.0 < (θ || Φ) < 18.0 0.1

18.0 < (θ || Φ) < 36.0 0.2
… …

162.0 < (θ || Φ) <= 180.0 1.0
-18.0 < (θ || Φ) < -2.0 -0.1

-36.0 < (θ || Φ) < -18.0 -0.2
… …

-180.0 <= (θ || Φ) < -162.0 -1.0

Finally, current pitch and roll angles are discretised at the

same way, according to Table IV. We have opted for a right

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

handed system, therefore pitch angle is positive when the
MAV’s nose is facing up, negative when it is facing down.
The same applies for the roll angle. Its value is positive when
the aircraft’s right wing is lower than the left one, negative in
the opposite case. Both discretised pitch and roll angles have
value 0 when the variations from the “equilibrium state” (i.e.,
the MAV’s front-to-back axis parallel to the ground and not
rolled) are smaller than 2 degrees.

IV. PRELIMINARY RESULTS
The results described in this section refer to the 3D

experimental setup based on the parameters listed below.
Each MAV’s movement is 3 GU long and cost 1 energy

unit. The flying speed is assumed as constant, it cannot be
modified during flight and cannot therefore affect the energy
consumption. The energy stored into each MAV amounts to
1,000 fuel units (FU). MAVs can therefore fly for 3,000 GU.

An initial population of 100 teams is created. When the
simulation begins, the individuals’ genotypes (each connection
weight and bias in the neural network) are created with
random values in the range [-5.0; +5.0]. All agents within a
team are genetic clones, thus sharing the same genotype.

Each team is formed by 4 MAVs. A team is tested for 8
epochs. At the beginning of each epoch, the target is randomly
placed in a different position, always 15 GU above the ground
level. All the MAVs belonging to the same team are deployed
inside this environment, in different starting positions close to
the four environment corners and facing the centre of the
cuboidal arena (with some random noise added to alter their
initial position).

The fitness formula used for driving the evolutionary
process has been kept as simple as possible:

 (1)

where: α is the average distance (measured in GU) between

the target and the team member detonated closest to it,
calculated basing on the various tests; β is the average amount
of energy retained by the MAV detonated closest to the target
during each test. If no MAVs detonate during the entire sets of
test epochs (which is a condition that could frequently happen
during the first stages of evolution), the values of α and β are
manually set to 1,386.54 and 0 respectively.

At the end of each generation, the 10 teams that have scored
the best performances according to the fitness formula are
selected for reproduction. Every parent team generates 9
offspring teams, which inherit the same genotype. For each
new team, a mutation process is applied. All the connection
weights and biases are affected, with probability 0.2, by the
addition of a random value included within the range [-1.0;
+1.0]. Elitism is also applied, so the first offspring of the best
individual within a given generation is not affected by any
kind of modifications of its genome and is kept in the next
population as it is.

The entire process is iterated for 350 generations. Five
different replications (i.e. same simulation with different

initial random genotypes at generation 0) are carried out. The
results reported here are averaged across the five replications
in order to identify a general evolutionary trend.

The charts below provide a summary of the results
generated by the evolutionary process.

Fig. 4. Average and maximum fitness during the 350 generations

In Figure 4 we can see how average and maximum fitness

increase generation by generation, until reaching what looks
like a steady state after 300 generations. As expected, both
lines start from low fitness levels (for the first 50 generations
the average fitness is negative, indicating that the “average
team” is not yet able to perform the desired task) and then
quickly increase.

Fig. 5. Average and minimum distance between the target and the detonation
point of the MAVs detonated closest to it

As mentioned above, the fitness formula used for evaluating

the performance of a MAV team has two main components.
The first is the average distance between the target and the
MAV detonated closest to it, during the 8 tests carried out for
each team. Figure 5 shows how the minimum average distance
(i.e., the one scored by the best swarm averaging the 8 tests
carried out) reaches a steady state after few generations. The
line representing the average for the entire population is
instead more jagged and decreases more slowly. The second
component of the fitness formula is the amount of energy
retained by the MAVs that have neutralized the target,

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

averaged for all the successful tests performed. This parameter
has been included into the fitness formula with the purpose of
creating a discriminatory effect whenever most of the MAV
teams would have been able to correctly reach and neutralize
the target. The idea is to favour those teams able to perform
the task faster than other members of the population. We were
therefore expecting a curve characterised by values increasing
generation by generation (or at least starting to increase after
that the average success rate for the entire population has
exceeded a certain threshold). The results presented in Figure
6 show how this expected phenomena in fact does not take
place. This is presumably due to the amount of generations
evolved, which is too limited for this trend to appear.

Fig. 6. Average amount of energy retained by the MAV eliminating the target

It is interesting to note that even if the fitness graph
suggests that the evolution has reached a steady stable, in
reality this is not the case. Looking at Figure 7 it becomes
obvious that the evolutionary process is still going on. What is
happening is that the entire population is converging to the
optimum point individuated by the evolutionary algorithm.
This phenomenon might results difficult to see in Figures 4
and 5, but it is clearly observed in Figure 7.

Fig. 7. Percentage of tests concluded successfully

Finally, Figure 8 shows a difference emerging from the new

simulations compared to what was happening with the 2D
simulator. In the previous 2D model, during the first

generations MAVs used to detonate immediately at the
beginning of each test. Then gradually, generation by
generation, the percentage of aircraft detonating reduced,
tending to the expected value of 1. Now the process takes
place in the opposite way. During the first generations most of
the MAVs end the various tests exiting by accident from the
environment boundaries. This proportion slowly diminishes,
while the average number of MAVs detonating within each
team increases as expected.

Fig. 8. End-test condition for the members of the "average" swarm. The plot
shows, during a typical test, how many MAVs detonate, exit from the
environment boundaries, run out of energy, collide against a team-member, or
survive

The effect described above is probably due to the size of the
environment, which - although adding a new dimension - is
relatively smaller than the one used for carrying out the 2D
simulations, thus resulting in MAVs that can exit more easily
from the environment boundaries.

V. DISCUSSION AND CONCLUSION
When we consider the validity of this work for real MAVs

control, it is fundamental to consider that this simulation
model intentionally uses a high level perspective, i.e. focuses
on generic flight navigation dynamics, and navigation and
search strategy. At this preliminary stage, we are not interested
in studying low-level aspects of the MAVs’ physical
interactions, such as considering air resistance on specific
aircraft configurations. We aim to provide the agents with
realistic, general flight dynamics that a real aircraft could
effectively reproduce. It will be part of future work, in
particular for aircraft engineering, to focus on the design of
robotic MAV platforms capable of accurately translating
controller’s decisions into proper commands for the aircraft.

One of the main contributions of this model is to propose
the use of combined ER and MAS systems for the distributed
control and coordination of autonomous flying agents. One of
the reasons behind the lack of progress in this area could be
due to the absence of a cheap and reliable robotic platform to
be used for MAV flying experiments. It is undisputable that
the initial success of the ER field has been greatly due to the
development and availability of easy reach robot platforms
such as Khepera [22]. This has allowed researchers to test

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

computer-elaborated behaviours on a physical robot facing the
full complexity of the real world2. However, a potentially
important development in the area of ER and flying behavior
is the contribution by Thomas and colleagues [23], who have
recently presented a test-bed flying vehicle that could
potentially fill this gap. The idea behind their work consists in
installing inexpensive commercial off-the-shelf components
on a basic radio controlled airplane in order to transform it to
an autonomous vehicle. They have employed two devices
manufactured by Crossbow®, namely the MNAV (a solid
state micro-electro-mechanical system unit that incorporates
three-axes measurement of acceleration and angular rates,
along with magnetometers, barometric pressure sensors, three-
axis temperature sensors, and an integrated GPS receiver) and
the Stargate (a single board computer running a 400MHz
processor, which can support a 802.11 Wi-Fi network card). In
their case, software running on a laptop computer wirelessly
connected to the aircraft makes possible to communicate with
it, receiving telemetry data and uploading new flight paths.
Even if this approach does not constitute a significant element
of novelty, it demonstrates how current technologies are
mature for the development of a new “flying Khepera”. Once
an affordable platform can be identified, carefully tested and
adopted as a standard by researchers across the world, the
investigations on the area of development of autonomous
controllers for flying robots through ER methodologies could
potentially register a significant boost.

When we compare ER for ground and air robotics, another
issue to consider is safety and robustness. A flying robot is
necessarily less resistant than a ground-based one and exposed
to bigger risks during experiments. While a Khepera can
harmlessly hit a wall if provided with a wrong instruction by
the controller, a MAV could instead crash on the ground
seriously compromising its functionality. And an additional
issue related to this is the need of ample lab space required for
carrying out flying experiments. Small ground-based robots
typically used in ER do not require much room, since
experiments involving this kind of platforms are frequently
carried out inside small squared arenas with a few meters side.
Aircraft generally need instead a much bigger area in order to
work properly. These two points have in turn both a financial
and a practical impact on the research and they have to be
taken into account since they cannot be excluded.

VI. FUTURE WORK
Plans for future work consider four main directions of
research.

A. Introduction of obstacles
In order to replicate all the results obtained with the 2D

simulations, the next step will consist in extending the new
model and add 3D obstacles such as buildings. MAVs will

2 At the same time, developing a computer simulator aimed to flying robots

presents issues definitely more complex than the ones coming from the
development of a simulator for ground-based robots. The Khepera’s success
has been strongly helped by the availability of good computer simulators.

have to be provided with embodied sensors capable of
detecting the presence of those obstacles. These sensors need
to be added to the three used in the old 2D simulator. A
tentative solution consists in using nine sensors configured as
shown in Figure 9.

Fig. 9. Isometric side and front views that show how the ultra-sonic sensors
could be deployed on the MAVs

B. Cooperation and language
Previous work has considered tasks requiring explicit

cooperation between teammates. It has been demonstrated
how the introduction of extremely simple forms of implicit
communication could allow cooperative behaviours to evolve
without requiring the pre-design of a cooperative strategy.

Future investigations along this direction will focus on the
introduction of various forms of communication between
teammates (from explicit, pre-defined communication
protocols, to self-organizing signaling systems). The purpose
of adding communication capabilities can clarify how direct
and local agent-agent communication could lead to a better
level of coordination between the MAVs, and in turn allowing
the teams to increase their effectiveness in performing
complex tasks. The approach toward the evolution of self-
organising communication systems will be based upon symbol
grounding theory as elaborated by Cangelosi et al. [24].

C. Provide the controller with short-term memory
During the last decades, many different methods to add

short-term memory to a perceptron architecture have been
proposed (see for example the widely used Elman networks
[25]). This principle, applied to the development of neural
autonomous controllers for robots, has proven to be
particularly beneficial for navigation tasks within unknown
environments [26]. Future work will consider the introduction
of memory structures into the agents’ controllers. Since the
neural architecture we are using in the current 3D model does
not include any hidden layer, future work will focus on the
implementation of a Jordan network [27]. A set of context
units will be then added to the neural network, reintroducing at
time t+1 the values produced by the output units at time t.

D. Multi-threading
The amount of time requested by the computer simulator to

perform the evolutionary process represents a serious issue
that has to be solved. The C++ code on which the simulator is
based on has already been optimized at the best of our
knowledge, disabling graphics rendering during the
evolutionary process, using simplified functions for collisions
detection, etc. Nonetheless, each simulation replica elaborated
and presented herein has required an average of about 60
hours of computation to evolve the relatively modest amount
of 350 generations. Although the evolutionary algorithms
slowness in converging toward an optimal solution represents

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

a common concern in ER, in this case there should be an edge
for improvement. On the basis of the actual trend in computer
science, looks like the most promising approach toward
optimization involves the introduction of multi-threading
principles. Future work will therefore include the
transformation of the developed simulator from a single-
threading to a multi-threading application. In our lab, this
improvement will make possible to fully benefit from the
employment of P-ARTS (Plymouth Advanced Robot Training
Suite), a powerful computer cluster recently awarded by our
research group as part of the Apple® PARTS program.

Finally, it is interesting to consider another aspect related to
simulation speed. In both the models described in this paper
all the MAVs belonging to a certain team share the same
controller, so it is essentially a single controller that evolve. If
we do not take into account complex setups as those requiring
communication and/or involving a “robust” target, it might
look feasible to evolve teams made by only one MAV each in
order to shorten the amount of time required by the
evolutionary process. What immediately appears looking at
Figure 10 is that the advantages coming from the use of a
single MAV (which roughly reduces the computational efforts
by one fourth if compared to the scenarios described herein)
are more than mitigated by the massively larger number of
generations required in order to evolve the desired behaviour.

Fig. 10. Percentage of tests concluded successfully for a MAV team made of a
single member. As it is possible to see into the plot, the success rate merely
reaches a maximum of 6% in 500 generations

What happens is quite reasonable. During the first

generations, in fact, MAVs approach and neutralize the target
purely by chance. Then this evolutionarily advantageous
behaviour improves and spread among the entire population.
The more MAVs are employed, the more likely is that this
process will take place since the very first generations. The
likelihood of succeeding in the task is in fact positively
correlated with the team size. The experiments carried out
have demonstrated how the selection of a proper team-size is
an important aspect to consider.

DISCLAIMER
The views and conclusions contained herein are those of the

authors and should not be interpreted as necessarily
representing the official policies and endorsements, either
expressed or implied, of the Air Force Office of Scientific
Research or the U.S. Government.

The U.S. Government is authorized to reproduce and
distribute reprints for government purpose notwithstanding
any copyright notation thereon.

REFERENCES
[1] S. Nolfi, and D. Floreano, Evolutionary Robotics, MIT Press, 2000.
[2] D. Floreano, and C. Mattiussi, Bio-Inspired Artificial Intelligence, MIT Press,

2008.
[3] V. Kodogiannis, “Neuro-control of unmanned underwater vehicles,” in Int.

Journal of Systems Science, Vol. 37(3), pp. 149-162, 2006.
[4] M. Dong, and Z. Sun, “A behavior-based architecture for unmanned aerial

vehicles,” in Proc. IEEE Int. Sym. on Intelligent Control, pp. 149-155, 2004.
[5] M.D. Richards, D. Whitley, and J.R. Beveridge, “Evolving cooperative strategies

for UAV teams,” in Proc. of GECCO 2005, pp. 332-339, 2005.
[6] D. Rathbun, S. Kragelund, A. Pongpunwattana, and B. Capozzi, “An evolution

based path planning algorithm for autonomous motion of a UAV through
uncertain environments,” in Proc. of 21st Digital Avionics System Conf., pp. 608-
619, 2002.

[7] R. Deming, L. Perlovsky, and R. Brockett, “Sensor fusion for swarms of
unmanned aerial vehicles using modeling field theory,” in Proc. of KIMAS 2005,
pp. 122-127, 2005.

[8] Y. Qu, Q. Pan, and J. Yan, “Flight path planning of UAV based on heuristically
search and genetic algorithms,” in Proc. of IECON 2005, pp. 45-49, 2005.

[9] G. Buskey, J. Roberts, P. Corke, P. Ridley, and G. Wyeth, “Sensing and control
for a small-size helicopter,” in Experimental Robotics VIII, Springer Berlin, pp.
476-486, 2003.

[10] R. De Nardi, O. Holland, J. Woods, and A. Clark, “SwarMAV: a swarm of
miniature aerial vehicles,” in Proc. of 21st Int. UAV Systems Conf., 2006.

[11] S. Hauert, J.C. Zufferey, and D. Floreano, “Evolved swarming without positioning
information: an application in aerial communication relay,” in Autonomous Robots,
Vol. 26(1), pp. 21-32, 2009.

[12] J.M. Sullivan, “Revolution or Evolution? The rise of the UAVs,” in IEEE
Technology and Society Magazine, Vol. 25(3), pp. 43-49, 2006.

[13] Wooldridge, M., An Introduction to MultiAgent Systems, John Wiley & Sons,
2009.

[14] T. Hussain, D. Montana, and G. Vidaver, “Evolution-based deliberative planning
for cooperative unmanned ground vehicles in a dynamic environment,” in Proc. of
GECCO 2004, pp. 1185-1196, 2004.

[15] P. Gaudiano, E. Bonabeau, and B. Shargel, “Evolving behaviors for a swarm of
unmanned air vehicles,” in Proc. of SIS 2005, pp. 317-324, 2005.

[16] A.S. Wu, A.C. Schultz, and A. Agah, “Evolving control for distributed micro air
vehicles,” in Proc. of IEEE Conf. on Computational Intelligence in Robotics and
Automation Engineers, pp. 174-179, 1999.

[17] N.R. Watson, N.W. John, and W.J. Crowther, “Simulation of Unmanned Air
Vehicle Flocking,” in Proc. of TPCG’03, pp. 130-137, 2003.

[18] F. Ruini, and A. Cangelosi, “Distributed Control in Multi-Agent Systems: a
Preliminary Model of Autonomous MAV Swarms,” in Proc. of FUSION 2008, pp.
1043-1050, 2008.

[19] F. Ruini, A. Cangelosi, and F. Zetule, “Individual and Cooperative Tasks
performed by MAV Teams driven by Embodied Neural Network Controllers,” in
Proc. of IJCNN 2009, in press.

[20] M. Cook, Flight Dynamics Principles, Elsevier, 2007.
[21] T. Netter, and N. Franceschini, “A Robotic Aircraft that follows Terrain Using a

Neuromorphic Eye,” in Proc. of the 2002 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, Vol. 1, pp. 129-134, 2002.

[22] F. Mondada, E. Franzi, and A. Guignard, “The Development of Khepera,” in Proc.
of 1st Int. Khepera Workshop, pp. 7-14, 1999.

[23] P. R. Thomas, and A. K. Cooke, “Simulation of an Automated Flight Test Safety
System for Autonomous System Identification of Small UAVs,” in Proc. of 24th
Int. Conf. on Unmanned Air Vehicle Systems, pp. 35.1-35.16, 2009.

[24] A. Cangelosi, V. Tikhanoff, J.F. Fontanari, and E. Hourdakis, “Integrating
language and cognition: A cognitive robotics approach,” in IEEE Computational
Intelligence Mag., Vol. 2(3), pp. 65-70, 2007.

[25] J.L. Elman, “Finding Structure in Time,” in Cognitive Science, Vol. 14, pp. 179-
211, 1990.

[26] A.L. Nelson, E. Grant, J.M. Galeotti, and S. Rhody, “Maze exploration behaviors
using an integrated evolutionary robotics environment,” in Robotics and
Autonomous Systems, Vol. 46, pp. 159-173, 2004.

[27] M.I. Jordan, “Attractor dynamics and parallelism in a connectionist sequential
machine,” in Proc. of Eighth Annual Conf. of the Cognitive Science Society, pp.
531–546, 1986.

