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a b s t r a c t

The work presented in this article focuses on the use of embodied neural networks – developed through
Evolutionary Robotics and Multi-Agent Systems methodologies – as autonomous distributed controllers
for Micro-unmanned Aerial Vehicle (MAV) teams. The main aim of the research is to extend the range
of domains that could be successfully tackled by the Evolutionary Robotics approach. The flying robots
realm is an area that has not been yet thoroughly investigated by this discipline. This is due to the lack
of an affordable and reliable robotic platform to use for carrying out experiments, and to the difficulty
and the high computational load involved in experiments based upon a realistic software simulator for
aircraft.We believe that themost recent improvements to the state of the art nowpermit the investigation
of this domain. For demonstrating this point, two different evolutionary computer simulation models are
presented in this article. The first model, which uses a simplified 2D test environment, has resulted in
controllers evolved with the following capabilities: (1) navigation through unknown environments, (2)
obstacle-avoidance, (3) tracking of a movable target, and (4) execution of cooperative and coordinated
behaviors based on implicit communication strategies. In order to improve the robustness of these results
and their potential use in real MAV teams, a more sophisticated 3Dmodel is presented herein. The results
obtained so far using the two models demonstrate the feasibility of the chosen approach for further
research on the design of autonomous controllers for MAVs.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

During the last decade several studies have been carried out
on both wheeled and underwater autonomous vehicles driven
by embodied neural network controllers (e.g. Baldassarre, Parisi,
& Nolfi, 2006; Kodogiannis, 2006). But, as yet, the application
of the same principles to flying robots has not been thoroughly
investigated. With the only notable exceptions of the systems
developed by Buskey, Roberts, Corke, Ridley, and Wyeth (2003),
De Nardi, Holland, Woods, and Clark (2006) and Hauert, Zufferey,
and Floreano (2009a) it seems that the current approaches to
the development of autonomous controllers for aircraft mainly
rely on techniques other than neural networks. Examples of the
methodologies employed are behavior-based robotics (Dong &
Sun, 2004), genetic programming (Barlow, Oh, & Grant, 2005;
Richards, Whitely, & Beveridge, 2005), evolution-based path
planning (Rathbun, Kragelund, Pongpunwattana, & Capozzi, 2002),
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modeling field theory (Deming, Perlovsky, & Brockett, 2005;
Perlovsky, 2001), and graph searchmethods (Qu, Pan, & Yan, 2005).
In this study we use a combination of Multi-Agent System

(MAS) (Wooldridge, 2009) and Evolutionary Robotics (ER)method-
ologies (Floreano & Mattiussi, 2009; Nolfi & Floreano, 2000) to de-
velop controllers for Micro-unmanned Aerial Vehicle (MAV) teams
for autonomous navigation. Test scenarios include obstacle-avoi-
dance and target reaching experiments in unknown environments.
Distributed control, intended as the process of coordinating the
movements of a number of agents in order to make them perform
a collective task without using a central controller, is generally
considered a interesting problem from both technological and sci-
entific perspectives (Nitschke, 2005). Good examples of the com-
plexity involved in designing effective cooperative strategies for
teams composed of many unmanned vehicles can be seen in the
works made by Hussain, Montana, and Vidaver (2004), and Gaudi-
ano, Bonabeau, and Shargel (2005).
In order to reduce this complexity level, many studies on the

behavior of groups of Unmanned Aerial Vehicles (UAVs) have
concentrated on flocking and swarming behavior (e.g., Bamberger,
Watson, Scheidt, & Moore, 2006; Corner & Lamont, 2004). The
simulations we describe here do not share all the principles of
swarm systems. For example, in theMAVmodel proposed here the
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individual agents cannot rely on the fundamental pre-defined rules
of swarm and flocking behavior, such as separation, alignment, and
cohesion (Kennedy & Eberhart, 2001).
Richards et al. (2005), reviewing the numerous approaches

to the development of control systems for teams of unmanned
vehicles, propose a useful classification of differentmethodologies.
Even if their categorization is quite detailed, it is probably possible
to reduce the family of methodologies identified to just two: (i)
reactive strategies and (ii) deliberative strategies. The approach
we have chosen for studying the emergence of cooperation in
MAVs is based on reactive strategies. In other words, no pre-
planned strategies for the teams are developed, since all the
aircraft simply react to the sensorial input they can gather, directly
or indirectly, from the environment. The cooperation emerges
spontaneously, simply modifying the rules driving the individual
behaviors. This method has several advantages with respect to
those belonging to the other main category, which is deliberative
approach. Deliberative approach strategies focus on developing
a specific flight path for each aircraft belonging to a team (see
for example Ablavsky, Stouch, & Snorasson, 2003) to follow. But
generating fixed routes in advance implies that a very good
knowledge of the reference environment is available to the central
controller, whether it is a human or a computer system. UAVs
relying on such a kind of deliberative controller could therefore
be considered autonomous, in the sense that they will be able to
autonomously follow a pre-planned flight path. But they would
not have the ability of taking autonomous decisions, therefore
resulting in a lack of intelligence (autonomy). This does not
represent an issue for domains such as civilian aviation, where
all the needed information is immediately available. The lack of
flexibility related to the deliberative approach instead becomes
problematic if we try to apply the same principles to dynamic
or unknown scenarios. Attempts have been made to overcome
these drawbacks by incorporating in deliberative approaches some
elements of adaptive replanning. The implementation of this kind
of improvement requires equipping the aircraft with a set of
sensors that enables them to fetch previously unknown, non-
accessible and/or non-existent information from the environment.
The idea behind adaptive replanning is that a centralized controller
generates a specific flight path for each UAV to follow based on
the currently available information. UAVs strictly follow those
paths until they detect some new elements through their sensors
(e.g. an unknown enemy or an unexpected obstacle). When this
happens, the sensor information gathered is sent back to the
controller, which may then decide to generate new flight paths for
the entire team (or just part of it) and transmit them to the UAVs.
A good example of adaptive replanning can be seen by looking
at the ‘‘UAV manager’’ concept elaborated by Rathinam, Zennaro,
Mak, and Sengupta (2004). Despite the fact that the adaptive
replanning approach looks promising, many issues remain to be
addressed in deliberative strategies. For example, to decidewhen a
replanning is required, and the amount of time needed to calculate
and broadcast the new flight paths to the various UAVs are two
non-trivial elements to consider. Scherer, Singh, Chamberlain, and
Elgersma (2008) have recently identified a possible solution using
two separated but interacting controllers that respectively act on a
global and on a local level (‘‘plan globally and react locally’’). Even
in this case, a good level of knowledge about the environment is
still required. Generally speaking,wemight argue that it is the need
for a central controller that is highly problematic. As highlighted
for example by Wu, Schultz, and Agah (1999), distributed control
is generally preferable since its non-critical reliance on any specific
element can in turn guarantee increased reliability, safety and
speed of response to the entire system. In addition to this we
believe that a distributed control system also has a better potential
to produce adaptive and flexible solutions for the tasks we are
interested in studying.
Themaindifference between themethodologyweare following
and a ‘‘standard’’ reactive strategy approach (as the one described
in Richards et al., 2005) mainly consists in the employment of a
neural network controller instead of a properly defined decision
tree. In both cases the controllers are subjected to an evolutionary
process and therefore the use of computer simulators for the
training phase is compulsory. The basic principle we have adopted
is to some extent similar to the ones proposed by Buskey et al.
(2003) and De Nardi et al. (2006) for the autonomous control of
unmanned helicopters. The controllerswe use are in fact embodied
neural networks whose outputs affect the aircraft’s orientation
and its direction of motion. However our approach introduces
at least three elements of novelty. The first is that we aim to
study the (simplified) dynamics of airplane-like UAVs rather than
helicopters. Even employing streamlined simulationmodels, as the
two described in this article, helicopters are much more flexible
in adjusting their movements during flight when compared to
airplane-like aircraft. If, for example, an unexpected obstacle is
encountered, a helicopter could easily hover overhead, perform a
180 degrees yaw and then look for a different path to follow.When
it comes to an airplane-like aircraft, this kind of behavior is not
possible, so the on-line adjustments to the current route need to
be extremely accurate.
The only work, to our knowledge, where neural networks are

applied to the control of non-helicopters or blimp aerial vehicles
is the one by Hauert et al. (2009a). Furthermore, another major
novelty consists in our decision to implement a basic obstacle-
avoidance mechanism, which represents an additional challenge
to be addressed by the neural controller. Traditionally, obstacle-
avoidance behavior has not been taken into account in studies
regarding UAV path planning. As pointed out by Rathbun et al.
(2002), this is mainly due to the fact that UAVs have usually
been restricted to operating in areas that do not contain any
other vehicles outside the control of the authority in charge of it.
Rathbun’s work, where an evolution-based path-planner is able
to deal with movable and non-accurately estimated obstacles,
constitutes one of the few meaningful exceptions to this trend.
Finally, the controller we use is made of a single feed-forward
neural network and not of different modules joined together, each
of these dedicated to managing different sub-tasks as in Buskey
et al. (2003) and De Nardi et al. (2006). The entire controller
therefore acts as a single entity. The task of identifying a favorable
decomposition of the controller into different dedicated modules
is left to the evolutionary process.

2. The 2D simulation model

In this section we introduce the first of the two models that
we have developed for our research. As previously mentioned, our
approach requires the employment of a computer simulator for the
evolution of the MAVs’ autonomous controllers. The structure of
the simulator is quite simple. A team is composed by four MAVs,
each endowed with its own neural network controller, identical to
the ones of its teammates. The task the MAVs have to perform is
a classical ‘‘search and hit’’ situation. At the beginning of a test, an
‘‘enemy’’ target is deployed somewhere inside the environment.
The simulated scenario is a rectangular area, with size 710 ×
760 pixels (px), consisting of a 2D representation of the Canary
Wharf financial district in London (Fig. 1). MAVs are represented
as squares with a side length of 2px.
Starting from the four corners of the area and facing the center

of the environment, the MAVs have to fly towards the target
attempting to eliminate it. In order to neutralize the target, one
of the MAVs needs to perform a self-detonation when it is close
enough to it (2.48 px or less). A test ends when the target has been
destroyed or noMAVs are still living. AnMAVwill die if it performs
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Fig. 1. A screenshot of the 2D simulator. On the left it is possible to see the environment used in this model. The obstacles, corresponding to the tallest buildings present in
the Canary Wharf area, have been highlighted.
a detonation, if it exits from the environment’s boundaries, if it
collides against a teammate, if it runs out of energy, or if it crashes
against a building.
Automatic target acquisition (ATR) is not provided to the

MAVs. In this way they do not need to execute such an intensive
computational task (even if the job could be effectively tackled
cooperatively, as demonstrated for example by Dasgupta, 2008).
Our assumption is based on the presence of a satellite system
that constantly monitors the target and broadcasts real-time
information about its position to all the teammembers. In this way
the MAVs, equipped with a GPS receiver, can easily calculate their
distance from the target matching the two data sources gathered.
A simple compass can also allow the MAVs to determine the
relative direction in which the target is located. In our simulator
each MAV is in fact given information about the distance between
itself and the target, as well as the angle that separates the two
agents based on the current MAV’s heading. This information is
received by the neural network (Fig. 2) controlling the aircraft’s
behavior by means of four input neurons: one encoding the
distance (using values discretized according to the maximum
distance possible inside the reference environment), the other
three the angle (using a Gray Code representation of eight possible
sub-spaces). The MAVs are also endowed with three ultra-sonic
sensors (respectively orientated at −20◦, 0◦, and +20◦ according
to the aircraft’s heading), capable of detecting the presence of an
obstacle. Categories of obstacles that MAVs can spot are the target,
the teammates, the buildings, and the environment boundaries.
This information is encoded using three continuous neurons, each
of them activated with a value representing the distance from the
current sensor and the closest obstacle perceived by it, if any are
within a certain range. The seven input neurons are fully connected
to the neural network’s hidden layer, made of fifteen continuous
neurons, activated through a tan-sigmoid function (slope 1.0),
which output values arewithin the range [−1.0;+1.0]. The neural
network’s output layer consists of just two neurons, receiving
incoming connections fromall the neurons belonging to the hidden
layer. One output unit controls the MAV’s yaw (+/ − 20◦ in
the time unit; this neuron has the same activation function as
the hidden layer neurons, but the output value is translated into
the range [−20.0;+20.0]); the other one is a Boolean neuron
(activated through a step function with a 0 threshold) that, when
it turns to 1, causes the MAV to carry out the detonation. It is
worth highlighting how all the neurons employed in this network
just use summation as the aggregation function. It means that the
activation function for each neuron (referred to below with the
letter g) can be formalized according to (1), where wn + 1 is a
parameter needed to take into account the biases, n is the number
of neurons connected to the given one, xi is the activation value of
the i-th neuron, andwi is theweight of the connection between the
i-th neuron and the given one.

f (x) = g

(
wn + 1

n∑
i=0

wixi

)
. (1)

The fact that we are simulating an airplane-like motion implies
the constraint, for the MAVs, of never being stationary. The
speed is assumed as constant: during each time-step all of the
simulated aircraft move 2 pixels along their heading direction
before eventually performing a yaw rotation.
The evolution towards a controller able to perform the desired

task is made possible through the use of a genetic algorithm (GA)
(Mitchell, 1998; Nolfi & Floreano, 2000). An initial population of
100 teams is created with randomly assigned connection weights
and biases ranging from−1.0 and+1.0. The genome (consisting of
a vector of real values, directly encoding connection weights and
biases values) is generated at a team-level. This means that all the
MAVmembers of a certain team share the same genotype, i.e. they
are driven by the same identical controller as their team-mates.
Each MAV team is tested four times with the target deployed in
randomly chosen positions within specific areas. Twice the target
will be inside an ‘‘enclosed area’’ at the center of the environment,
surrounded by buildings and with narrow entrances, twice it will
be put outside this area. The MAVs start each test with an initial
storage amounting to 5,000 energy units each, and they spend 2.14
energy units per time-step. At the end of each generation the 20
individuals that have performed the best scores according to the
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Fig. 2. Graphical representation of the basic neural network controller used for
the 2D model. The input layer, on the left, contains three neurons encoding the
horizontal angle (Ψ i) and the distance (d) between the MAV and the target, as well
as the ultra-sonic perception (ω) of obstacles. Between the input and the output
layer there is a hidden layer made of 15 continuous neurons, activated by a tan-
sigmoid function. The output layer, on the right, contains the neuron that generates
the yaw (Ψ o), plus the one dedicated to the detonation of the aircraft (det.) All the
modules are fully forward connected. [B: Boolean, D: discrete, C: continuous].

fitness formula are selected for reproduction. The fitness formula
used is the following:

f = −α +
(
β

50

)
+ (σ ∗ 50)+ (ε ∗ 10), (2)

where: α is the average distance (measured in pixels) between the
target and the team member detonated closest to it, calculated
based on the four tests performed; β is the average amount
of energy retained by the MAV detonated closest to the target,
again calculated based on the four tests; σ is the number of tests
concluded by the given team with the elimination of the target;
and ε is the total number of MAVs remaining alive after the four
tests have finished (maximum 12).
Each of the selected teams generates 5 copies of its genome,

on which the mutation operator is then applied. Each gene of the
copied genome is modified, with probability 0.25, by a random
amount between −0.5 and +0.5. The only exception is for the
best individual of the current generation, which generates a copy
of its genome without any modifications (elitism). The resulting
100 individuals will constitute the new population at the next
generation. The evolutionary process lasts for 2,500 generations
and it is repeated 10 times, with the results coming from all the
different runs averaged, in order to obtain more robust data about
the generated trends.
The results showhow the elaborated set up can lead quite easily

to the evolution of the desired behavior. At the end of the evolution,
on average, we have the 93.46% of tests successfully concluded in
empty environments and 87.18% when obstacles are present. It is
interesting to consider how the fitness formula we have decided to
use does not require taking into account any information about the
environment, such aswaypoints disseminated in specific places (as
did for example by De Nardi et al., 2006; and Scherer et al., 2008).
Navigation and obstacle-avoidance abilities emerge run-time as
sub-tasks necessary for the completion of the main task, which is
to neutralize the target.

2.1. Experiments using a movable target

In this experimental scenario, the target is able to detect anMAV
approaching it. This newproperty of the target has been introduced
to increase the complexity of the task and test the robustness of the
model. The simulation starts as usual, with the target deployed in
a random position within the environment and fixed on it. During
each time step, if an MAV happens to be closer than 17 px to the
target, the latter switches to a particular ‘‘MAV detected mode’’
with probability 0.5. In the event of detection, the target will then
move away from the closest aircraft during each time step in order
to maximize the distance from it. The decision on the best place
to move is taken after the evaluation of 8 alternative locations.
These positions are respectively located at north, north/east, east,
south/east, south, south/west, west, and north/west, calculated on
the basis of the current target’s orientation. The distance of these
locations from the target (equal for all of them) depends on its
speed. The target will keep escaping from the aircraft until all of
the detected MAVs die or the distance between the target and the
closest aircraft rises above the 48 px threshold.
Five simulations have been carried out where we vary the

escaping speed of the target. These different speeds in the various
simulations respectively correspond to different fractions of the
MAV’s speed (Ms) : Ms/2 (Simulation A1), Ms/3 (Simulation A2),
Ms/4 (Simulation A3),Ms/5 (Simulation A4), andMs/6 (Simulation
A5). The results obtained are summarized in Table 1.
Observing the outcome of these simulations (more details can

be found in Ruini, Cangelosi, & Zetule, 2009) we can easily iden-
tify a kind of threshold. Simulations A3, A4 and A5 seem to per-
form equally well according to the various parameters measured.
Simulation A2 produces a significantly worse performance for the
average fitness, but could be considered as performing reasonably
well if we take into account both the maximum fitness and the av-
erage percentage of tests concluded successfully. In simulation A1
the success rate of the MAVs drops instead.
Comparing these results with the ones obtained using a

static target, we can notice a general performance decrement.
As clearly shown in Fig. 3, the difference is mainly concentrated
in the average values, while the maximum ones (i.e., the best
individuals/controllers within a certain generation) tend to reach
a similar level of performance. The main conclusion drawn from
this experiment is that the algorithm setup can evolve MAV
controllers able to navigate through unknown environments and
autonomously reach and destroy a target, not only when the latter
is fixed on a certain position, but also if it is able to move away
from them. The only constraint is that, in order to keep a good
success rate, the target should not be able to move faster than one
third of the MAVs’ speed. This is quite a reasonable assumption if
we suppose that the target is not a vehicle, but a person instead.
A typical MAV platform could easily reach a speed of 50 km/h.
One third of this velocity roughly corresponds to 16–17 km/h.
Considering that the speed of an average person moving within a
crowded environment could be approximated to 4–7 km/h while
walking, and 12–15 km/h while running (furthermore, this speed
would be just maintainable for a short period of time), we might
argue that the evolved controllers are able to accomplish their task
with a good degree of confidence even against a movable target.

2.2. Experiments requiring a cooperative approach

The setup labeled as experiment B adds the constraint of
requiring two MAVs to detonate against the target at the same
time (i.e., within a limited maximum number of time-steps apart
from each other, since the simulation works in discrete time) in
order to neutralize it. The target begins each training epoch with
the assigned status of ‘‘intact’’. When it happens that one of the
MAVs detonates close enough to it (i.e., the same situation as in
the previous setups would have provoked the elimination of the
target), the target’s status switches to ‘‘damaged’’. If a secondMAV
manages to detonate close enough to the target while this is still in
the damaged mode, the latter will be eliminated. Otherwise, after
10 time-steps of damaged state, the target will restore its original
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Table 1
Summary of the results for Simulations A.

Sim. Av. fitness Max fitness Av. success (%) Av. dist from the target (px) Min. dist from the target (px)

A1 138.93 395.18 54.48 92.94 1.34
A2 198.08 409.67 78.28 107 1.09
A3 250.68 411.74 81.89 72.47 0.95
A4 258.72 409.9 83.3 70.03 0.98
A5 242.42 413.05 84.06 95.53 0.81
Comparison between average and maximum fitness values for simulations B and C
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Fig. 3. Average and maximum fitness for simulations A3, A4 and A5 compared to
the preliminary results obtained using a fixed target.

‘‘intact’’ condition and the simulation will goes on as usual till the
neutralization of the target or the failure of the entire MAV team.
In order to make the MAVs able to accomplish this task, we

have provided them with the capability of gathering new pieces
of information from the environment. Each member of the team
is now able to detect both the status of the target (intact rather
than damaged) and the presence of a teammate within a 30
px distance. We assume that the information about the target’s
status is provided to the active MAVs by the satellite system (see
Section 2), following the disappearance of an aircraft when at a
distance compatible with the damaging of the target. As in any
real life scenario where a task has to be performed cooperatively,
the agents involved in it need to be provided with the capability to
communicate, explicitly (i.e., intentionally) or implicitly (i.e., non-
intentionally), with each other. In this experiment we introduce
a simple form of implicit communication, merely consisting
in the observation of the other teammates (Pagello, D’Angelo,
Montesello, Garelli, & Ferrari, 1999). In more detail, we define
experiencing an implicit communication exchange as the ability to
detect the presence of a teammate within a MAV’s own sensorial
space. This information is given as input to the neural controller
through two additional Boolean neurons. These two neurons
implement a kind of logical OR. Apart from being in the proximity
of the target, in order to decide the proper moment at which to
detonate, an MAV also needs to know that there is a teammate
close to it (thus the second hit can presumably be delivered soon),
or that the target has recently been struck (i.e., it is currently on the
damaged status), or that both conditions (closeness of a teammate
and target’s damaged status) are true. Three neurons have been
added to the hidden layer. Apart from these modifications the rest
of the neural networkmaintains the same characteristics as before.
The fitness formula has been also modified in order to let the

new desired behavior evolve. We have now introduced the con-
cepts of ‘‘target approached’’ and ‘‘target damaged’’. At the end of
a test, we define the target as approached if at least one MAV has
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Fig. 4. Simulation B — percentages of tests respectively concluded with the
approaching, the damaging and the neutralization of the target when it is not
capable of moving and it has to be attacked cooperatively.

detonatedwithin a 63 px distance from it. The target is instead con-
sidered damaged if at least one MAV has managed to hit it. These
modifications tend to recreate what we could call an incremen-
tal evolutionary process (though pursued in a different way than
that done for example by Barlow et al., 2005). The MAVs initially
learn how to perform the simplest sub-tasks (avoiding obstacles
and approaching the target) and then progressively move towards
the more complicated sub-tasks (damaging and neutralizing the
target respectively), which in turns make the accomplishment of
the overall task possible.
Putting this all together, the new fitness formula is:

f = (γ ∗
χ

4
)+

(
η ∗

χ

2

)
+ (λ ∗ χ)+ (ε ∗ 10)+

(
β

50

)
, (3)

where: γ is the number of tests concluded with at least one MAV
approaching the target in the sense we have defined above; η is
the number of tests concluded with at least one MAV damaging
the target; λ is the number of tests concluded successfully with
χ = 50 (χ is just a parameter arbitrary chosen in order to assign
different specific weights to γ , η and λ). Parameters ε and β have
similar meanings to those in (2), as they respectively represent
the total number of MAVs surviving at the end of the all tests
and the average amount of energy retained by the MAVs that had
eventually neutralized the target. Consider that now every team
is tested 12 times and the evolutionary process lasts for 5,000
generations.
Figs. 4 and 5 show the results obtained with this experimental

setup, respectively with a fixed and a movable target. The simula-
tions carried out using a fixed target have produced an overall good
performance. On average, for the individuals belonging to the last
generation, more than 70% of tests are successful, while 90% finish
with the target hit at least once.
The strategy that the MAVs evolve is straightforward, but

nonetheless very effective. They independently look for the way
to the target as in the previous experimental setup, without
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Paths followed by the four MAVs during a test requiring a coordinated attack to neutralize the target
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Fig. 6. Flight paths followed by the members of a team belonging to the last
generation in order to reach the target and attack it cooperatively.

any interactions (if not purely generated by chance) with the
teammates. Once the first MAV gets close to the target, instead of
detonating it continuously flies in a circle around its position. Only
when a teammate also arrives in the proximity of the target (thus
being detected by the aircraft already there), does the first MAV
carry out the detonation damaging the target. The second MAV,
detecting the target as damaged, attacks it without waiting for any
other teammembers to arrive, successfully concluding the test. An
example of the evolved behavior can be observed in Fig. 6.
The performance of the teams dramatically decreases when the

target is moving. In this experimental setup, only 50% of tests end
with the neutralization of the target, even if the percentages of
tests concluded both with the approaching and with the damag-
ing of the target are comparable to those obtained in case of a non-
movable target. Of course we have to consider that what we are
illustrating are average results referred to an entire population. It
means that, within this population, the likelihood of having MAV
teams that are particularly good at performing the desired task (i.e.
with an accuracy level close to 100%), is extremely high. Neverthe-
less, a target being able to move constitutes a major issue for the
MAVs, since they find it more difficult to implement the strategy
described above. The first aircraft approaching the target can have
in fact a hard time flying around the target when it moves, for ex-
ample, close to a building (when a test starts, the target is always
deployed at a certain distance from both the buildings and the en-
vironment boundaries). The continuous target’s movements could
also provoke the attacker to incur somemistakes, for examplewith
the first MAV misjudging the right moment in which to detonate
and resulting in the second aircraft arriving too late at the target.
Future investigations will focus on the introduction of forms of ex-
plicit communication between the MAVs that could positively af-
fect the likelihood of successfully completing this kind of task.

3. The 3D simulation model

The extension of the previously described model to a 3D one
requires an expansion of the number of degrees of freedom (DOF)
involved in the evolutionary and neural control process. The new
3D model introduces two new DOF. In the 2D simulator described
before, MAVs were only able to rotate their body clockwise or
counter-clockwise, while constrained to move along their head-
ing direction at every time step. They were substantially relying
on a single DOF. The aircraft we are now modeling in the 3D envi-
ronment are instead able to rotate along three different axes. If we
consider an orthogonal axis system fixed on the aircraft and con-
strained to move with it (what is sometimes defined as ‘‘body axis
system’’), the rotations that are possible to the MAVs can be re-
spectively defined as ‘‘yaw’’, ‘‘pitch’’, and ‘‘roll’’. In detail: yaw cor-
responds the rotation of the aircraft around its vertical axis; pitch
is the rotation around the side-to-side axis; roll refers to the rota-
tion around the front-to-back axis (for a more accurate description
of the systems of axes and notations used in flight dynamics, see
for example Cook, 2007).
The use of a new3D simulator involves an additional issue in the

domain of autonomous controllers for aircraft. This regards terrain
avoidance (see for example Netter & Franceschini, 2002), and it
represents a key capability that should be provided to MAVs along
with obstacle avoidance. For the sake of simplicity, the scenario
used for this simulation is assumed as a flat ground plane located at
sea level. Though an explicit control strategy for terrain avoidance
is not planned in the model; as we will see later the MAVs will
acquire this ability as a side product of the evolutionary process.
MAVs have to be able to avoid crashing into the ground, but they
also must not fly at an excessive height. The simulator, in fact, will
consider ‘‘lost’’, without any distinctions, all the aircraft exiting
from the bottom or top boundaries of the environment.
The environment simulated in the 3Dmodelmeasures 1,000 (X)

× 750 (Y)× 600 (Z) graphical units (GU2). The target is represented
by a spherewith 15GU radius. All theMAVshave an identical shape
and size with a length of 5 GU and a wingspan of 3.5 GU.
The task in this new simulator is the same as before. A certain

number ofMAVs – all members of the same team, butmoving from
different positions – have to navigate through the environment,
reach a certain target deployed inside a central area (without exit-
ing the environment boundaries) and then perform a detonation
in order to neutralize it. The test is considered successful when
the detonation happens within a 15 GU distance from the target.
If all MAVs ‘‘die’’ without having neutralized the target, the test
is considered failed. In addition to losing an MAV because of self-
detonation or exiting from the environment boundaries, an aircraft
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Fig. 7. Graphical representation of the neural network controller used for the 3D
model. The input layer, on the left, contains four neurons encoding the horizontal
angle separating the MAV and the target (Ψ i), the MAV’s pitch and roll angles (θ i
and Φ i respectively), the delta height (1h) and the distance (d) between the MAV
and the target. The output layer, on the right, contains the neurons generating yaw,
pitch and roll (Ψ o , θ o , and Φo), plus the one dedicated to the detonation of the
aircraft (det.). [B: Boolean, D: discrete, C: continuous].

can also be lost during a test if it runs out of energy or if it collides
against a teammate.
The controller we have designed for this model (Fig. 7) is

based on a feed-forward neural network, constituted by one input
and one output layer. The input layer receives five chunks of
information: (1) horizontal angle between theMAV and the target,
(2) distance to the target, (3) delta height compared to the target,
(4) current pitch angle, and (5) current roll angle. The output
layer provides the effectors of the MAV’s behavior: (1) yaw, (2)
pitch, (3) roll, and (4) detonation. The two layers are not fully
connected. While the neural modules dedicated to modifying
the MAV flight trajectory (i.e., yaw, pitch and roll) receive their
incoming connections from all the input neurons, the module
dedicated to the detonation only receives information about the
distance between the MAV and the target. Each controller is
characterized by 25 connection weights and 4 biases (each of
them applied to one of the output layer’s units). All the neurons
belonging to the input layer do not have any bias and use an
identity transfer function, which does not modify the values set
in input. The information fed to the network is processed and
then passed to the output layer. The output neurons that manage
yaw/pitch/roll produce a continuous output value, based on the
weighted sum of all the contributions received in input. They are
activated according to a tan-sigmoid function (slope 1.0), which
outputs in the range [−1.0;+1.0]. The output unit dedicated to the
detonation is instead a Boolean one, activated by a step function
with a 0 threshold. When it turns to 1 the MAV detonates, while
nothing happens when the value of this neuron is 0.
For measuring pitch and roll angles (also referred to as ‘‘atti-

tude’’) we have chosen a right handed axis system. This means
that positive pitch is nose up and positive roll is right wing
down. The correlation between the output values generated by
the controller and the effects made on the aircraft is 1-to-1. Dur-
ing each time step an MAV can therefore perform a pitch be-
tween −1.0 (nose down) and +1.0 (nose up) degrees, and a
roll ranging from −1.0 (left wing down) and +1.0 (right wing
down) degrees. Positive yaw is considered as a clockwise rotation
around the aircraft’s vertical axis. Again the amount of this rota-
tion ranges between −1.0 and +1.0 at each time step. The 0 out-
put does not generate any change to the current aircraft’s orienta-
tion (for more details about the input/output encodings used, see
Ruini & Cangelosi, in press). Consider that in this model both

2 We are now following the conventions of the 3D engine used, namely Irrlicht
(http://irrlicht.sourceforge.net), which uses ‘‘graphical units’’ instead than pixels.
roll and yaw are available as options to the controller. Real air-
craft, and this is particularly true for MAVs, can perform different
steering manoeuvres according to how they have been designed.
Typically the decisionsmade during the design phase allow the air-
craft either to roll (when ailerons have been installed on the trail-
ing edge of the central wings in case of a fixed-wing airplane) or
alternatively to yaw (if the steering is implemented through the
rearwing). In the latter scenario, a yawmanoeuvre also generates a
correlated roll of the aircraft (seeWatson, John, & Crowther, 2003).
Providing the controller with the capability of exploiting both yaw
and roll, and notwithstanding how this decision makes the evolu-
tionary process harder, we can obtain a greater degree of flexibility
from the model.
Each MAV’s movement is 3 GU long and cost 1 energy unit. The

flying speed is assumed as constant, it cannot be modified during
flight and cannot therefore affect the energy consumption.
Also in this case it is an evolutionary process that leads to a

suitable configuration of weights and biases for the network. From
a GA perspective, an initial population of 100 teams is created.
When the simulation begins, each value contained in the genotype
(i.e., each connection weight and bias characterizing the neural
network) assumes a random value in the range [−5.0;+5.0]. All
agents within a team are genetically clones, thus sharing the same
genotype. Each team is formed by 4 MAVs, and it is tested for 8
epochs. At the beginning of each epoch the energy stored in each
MAV amounts to 1,000 fuel units (FU). MAVs can therefore fly for
3,000 GU. When an epoch starts the target is randomly placed in a
certain position, 15 GU above ground level. All theMAVs belonging
to the same team are deployed in different starting positions close
to the four environment corners and tendentially (due to some
random noise added to alter their initial position) facing the center
of the cuboidal arena.
The fitness formula used for driving the evolutionary process

has been kept as simple as possible:

f = −α + β, (4)

where: α is the average distance (measured in GU) between the
target and the team member detonated closest to it, calculated
based on the various tests; and β is the average amount of energy
retained by the MAV detonated closest to the target during each
test. If no MAVs detonate during the entire set of test epochs
(which is a condition that could frequently happen during the first
stages of evolution), the values of α and β are automatically set to
1,386.54 and 0 respectively.
At the end of each generation, the 10 teams that have scored

the best performances according to the fitness formula are selected
for reproduction. Every parent team generates 9 offspring teams,
which inherit the same genome. For each new team, a mutation
process is applied. All the connection weights and biases are
affected, with probability 0.2, by the addition of a random value
included within the range [−1.0;+1.0]. Elitism is also applied, so
the first offspring of the best team within a given generation is
not affected by any kind of modification of its genome and is kept
unchanged in the next population.

3.1. Preliminary results

The evolutionary process described in the previous section is
iterated for 350 generations. Five different replications (i.e., the
same simulation with different initial random genotypes at
generation 0) are carried out. The results reported here (to which
we refer as experiment C) are averaged across the five replications
in order to identify a general evolutionary trend. The charts
described below provide a summary of the results generated by
the evolutionary process.

http://irrlicht.sourceforge.net
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Fig. 8. Simulation C — average and maximum fitness.
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Fig. 9. Simulation C — average and minimum distance between the target and the
detonation point of the MAVs exploded closest to it.

In Fig. 8 we can see how average andmaximum fitness increase
generation by generation, until reaching what looks like a steady
state after 300 generations. As expected, both lines start from low
fitness levels (for the first 50 generations the average fitness is
negative, indicating that the ‘‘average team’’ is not yet able to
perform the desired task) and then quickly increase.
Asmentioned above, the fitness formula used for evaluating the

performance of an MAV team has two main components. The first
is the average distance between the target and the MAV detonated
closest to it, during the 8 tests carried out for each team. Fig. 9
shows how the minimum average distance (i.e., the one scored by
the best swarm averaging the 8 tests carried out) reaches a steady
state after a few generations. The line representing the average for
the entire population is instead more jagged and decreases more
slowly.
The second component of the fitness formula is the amount

of energy retained by the MAVs that have neutralized the target,
averaged for all the successful tests performed. This parameter
has been included in the fitness formula with the purpose of
creating a discriminatory effect whenever most of the MAV teams
within the same generation would have been able to correctly
reach and neutralize the target. The idea is to favor those teams
Average energy amount retained by the MAV eliminating the target
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able to perform the task faster than other members of the
population. We were therefore expecting a curve characterized by
values increasing generation by generation (or at least starting to
increase after the average success rate for the entire population has
exceeded a certain threshold). The results presented in Fig. 10 show
how this expected phenomena in fact does not take place. This is
presumably due to the number of generations evolved,which is too
limited for this trend to appear.
It is interesting to note that even if the fitness graph suggests

that the evolution has reached a steady state, in reality this is not
the case. Looking at Fig. 11 it becomes obvious that the evolution-
ary process is still going on. What is happening is that the entire
population is still converging to the optimum point individuated
by the evolutionary algorithm. This phenomenon might make re-
sults difficult to see in Figs. 9 and 10, but it is quite clear in Fig. 11.

4. Conclusions

The work described in this paper has demonstrated the feasi-
bility of an approach based on a mixture of evolutionary robotics
and multi-agent systems methodologies for the development of
autonomous controllers for flying robots. Controllers evolved in
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different experimental setups haveproven to be effective in driving
aircraft through unknown urban-like environments, performing
obstacle avoidance behaviors and effectively carrying out target-
tracking operations. At the same time, cooperative behaviors based
upon implicit communication strategies have proven to evolve
easily.
ER employed as a methodology for designing autonomous con-

trollers for robots carries with it several advantages when com-
pared to traditional designmethodologies. First of all, as it consists
of a bottom-up approach instead of a classical top-down method-
ology, the designing phase is much easier. This is because the re-
searchers do not need to identify a solution a priori, its division
into sub-behaviors, and a strategy to integrate sub-behavior into
a higher level working solution. In an evolutionary-based design
the only requirement is to provide the evolutionary algorithmused
with all the building blocks necessary to autonomously evolve the
proper solution. How these building blocks are assembled together
is not an issue that the experimenter typically has to take into ac-
count. Moreover, ER experimentsmake it possible to find solutions
that researchers might not have foreseen or considered and that
could prove to be better than the ones obtained through classic
design methodologies. For certain kind of tasks it could be diffi-
cult to predict how various controllers should co-ordinate. This is
frequently the case when using teams comprising a large number
of members or when trying to replicate in robots the higher cog-
nitive functions typical of living systems. ER can, in these cases,
provide solutions otherwise not reachable. Furthermore, robotic
controllers derived by ER methodologies have the advantages of
relatively fast adaptation time and carefree operations (for more
details about the advantages providedby evolutionary robotics, see
Nolfi & Floreano, 2000).
The new paradigm we have adopted in this work makes it

difficult to compare the results presentedmeaningfully with those
that it might be possible to obtain using controllers designed
according to different development methodologies. In case of
environment without obstacles, it could certainly be possible to
test some classic deliberative path-planning algorithms and use
them as a benchmark. Having a benchmark experiment could
prove to be useful, but we do not expect that our approach
necessarily provide a better solution than the ones generated using
alternative methods. It is quite likely that the solutions generated
for simple tasks would instead be slightly worse. The strength of
the evolutionary robotics approach comes from the ease of design
mentioned above and from the possibility of generating solutions
for problems which would otherwise be extremely hard to tackle.
Apart from these issues, it is not possible to perform direct fitness-
metrics comparisons with the other works mentioned in the
introduction because they all focus on very different kinds of task.
For example, Richards et al. (2005) are interested in coordinating
teams of UAVs for mapping certain areas in the shortest time
possible, while Dong and Sun (2004) just outline a theoretical
framework not supported by any experiments. In other cases
(Ablavsky et al., 2003; Rathinam et al., 2004), the assumptions
made are too different from the ones upon which our models
are based. Most of the research found in the literature about
autonomous control for unmanned aircraft assumes that a certain
level of knowledge about the environment is available to the
controllers. Of course this is a quite reasonable assumption, since
these works generally focus on controllers for UAVs supposed to
fly very high in the sky, within limited and well known areas, thus
not interacting with any unexpected element. The use of MAVs in
urban environments, as theorized by this study, carries with it a
long series of issues not yet addressed in the literature.
For future research in ER applied to autonomous aircrafts, a

few aspects need to be considered. In particular, we will discuss
here the validity of the simulations for the design of controllers
for physical robots, the need for a testbed platform in ER aircraft
studies (which would make it easier to compare models and
algorithms developed in different labs), and the issue of the neural
network as a black-box controller.
When we consider the validity of this work for real MAV

controllers, it is fundamental to note that the simulation models
described herein intentionally focus on a high level perspective,
i.e. on generic flight dynamics, and the navigation and search
strategy. At this preliminary stage, we are not yet interested in
studying low-level aspects of the MAVs’ physical interactions with
the environment, such as considering air resistance on specific
aircraft configurations. The model presented here aims to provide
the agents with realistic, general flight dynamics that an aircraft
could effectively reproduce. It will be part of future work, in
particular for aircraft engineering, to focus on the design of robotic
MAV platforms capable of accurately translating the controller’s
decisions into proper commands for the aircraft.
When we consider the current lack of progress in the area of

ER applied to aircraft, in comparison with numerous studies on
terrestrial mobile robots, one of the main reasons is the absence
of an affordable and reliable testbed platform to be used for
experiments. It is undisputable that the success of the evolutionary
robotics field has been greatly benefited by the availability of
easy reach robot platforms, such as Khepera (Mondada, Franzi,
& Guignard, 1999) and e-puck (Mondada et al., 2009). This has
allowed researchers all over theworld to test computer-elaborated
behaviors on physical robots facing the complexity of the real
world3. If we compare ER for ground and air robotics, aspects
to be considered are safety and robustness. A flying robot is
necessarily less resistant than a ground-based one and exposed to
bigger risks during experiments. An additional issue is the need
of ample lab space required for carrying out flying experiments.
Whilst small ground-based robots are frequently employed on
small arenas, aircraft require a much bigger area in order to be
tested properly. However, a recent development that could sustain
development of ER research with autonomous aircrafts is the test
platform proposed by Thomas and Cooke (2009). This is based on
commercial off-the-shelf components installed on a basic radio-
controlled airplane in order to transform it to an autonomous
vehicle.
One of the criticisms about the ER approach consists in the fact

that it mostly relies on neural networks. NNs evolved following the
methodologies dictated by ER can be arguably seen as sorts of black
boxes, which for example make it hard to predict responses to un-
foreseen input conditions. Recently, Hauert, Zufferey, and Floreano
(2009b) have proposed a methodology that makes it possible to
reverse-engineer neural network controllers, translating them into
deterministic controllers to be safely used for driving real robotic
platforms. If their approach proves to be robust and easily general-
izable, its impact on the future research into evolutionary robotics
could be extremely high.
Plans for future work will also include the replication, using

the 3D models, of all the experiments carried out in the 2D
environment. Various new neural network architectures will be
tested, considering the introduction of input recurrences (see Ruini
& Cangelosi, in press), in order to provide the controllers with
a basic short-term memory. There is also room for testing other
ideas. For example, prey/predator co-evolution (as analyzed by
Nolfi & Floreano, 1998) is an interesting topic that could be
easily tackled given the specifications of the simulators described

3 At the same time, developing a computer simulator aimed at flying robots
presents issues definitely more complex than the ones coming from the
development of a simulator for ground-based robots. The Khepera’s success, for
example, has been strongly helped by the availability of good computer simulators.
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in this paper. Further studies on the role played by explicit
communication (how it can be generated by the evolutionary
process and how it could prove to be effective) will be carried out
as well.
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