
An Incremental Approach to the Evolutionary Design of Autonomous
Controllers for Micro-unmanned Aerial Vehicles

Fabio Ruini and Angelo Cangelosi

Abstract— The work presented herein aims to provide a
quantitative measure of the impact deriving from the adoption
of an incremental approach to evolution within the context
of Evolutionary Robotics. Notwithstanding the large amount
of published researches relying on incremental evolution, little
quantitative analysis have been performed so far to provide the
answer to a basic question: is incremental evolution beneficial
for evolutionary approaches to autonomous robotics? The
application we use as testbed is a computer-based model of
MAV (Micro-unmanned Aerial Vehicles) autonomous naviga-
tion. Either single individuals embedding a neural network
controller or teams made of several MAVs are subjected to
different tasks across a simulated three-dimensional world.
These tasks are: (1) navigation to a target area, (2) tracking
of a moving target, and (3) execution of a behaviour requiring
spatial and temporal coordination among members of the same
team. The results obtained are compared with those generated
via direct evolution. There are no evidences of systematic
advantages deriving from the adoption of an incremental
evolution approach.

I. INTRODUCTION

Focusing on the domain of evolutionary computation, for
’incremental evolution’ - as concisely stated by Barlow [1] -
we refer to ”the process of evolving a population on a simple
problem and then using the resulting evolved population as
a seed to evolve a solution to a related problem of greater
complexity”. Incremental evolution is an alternative approach
to the traditional ’direct evolution’ methodology, where a
population is evolved to tackle the most complex problem
directly.

The inspiration for an incremental approach in artificial
evolution clearly derives from biological evolution. Animal
species (and this is particularly true for humans) have
acquired over the time the ability to perform extremely
complex tasks. These abilities have not appeared from the
middle of nowhere at a certain step along the evolutionary
path, rather they have been progressively built up on top of
simpler behaviours used as prerequisites. If it is true that
these simple behaviours have been sometimes quite evident
in their manifestations (e.g., in order to learn how to run, the
humans have gone through a complex series of sequential
steps involving standing on their legs, walking, etc.) this has
not always been the case. Sometimes, in fact, the underlying
capabilities needed as prerequisites for the development of
more complex behaviours remained ’silent’ over the time, i.e.
not expressed in form of explicit behaviours before abruptly

F. Ruini and A. Cangelosi are with the Centre for Robotics and
Neural Systems, School of Computing and Mathematics, University of
Plymouth, Drake Circus, PL4 8AA Plymouth, UK {fabio.ruini,
a.cangelosi}@plymouth.ac.uk

appearing. This is what has been demonstrated by Gould
introducing the concept of ’punctuated equilibrium’ [2], a
phenomena that later on has been easily identified among
many others areas outside the biological evolution domain,
such as the introduction of government policies [3], the
diffusion of technological innovations [4], etc. Depending
on the fitness formulae used and the specifications of the
problem tackled, both continuous evolution and punctuated
equilibrium dynamics (see for example the classic work by
Lindgren [5]) can be seen as result of computer-simulated
evolutionary processes. Incremental evolution, by definition,
recreates punctuated equilibrium-like dynamics, even though
the same sort of phenomena can emerge from direct evo-
lution, especially when complex multi-parameters fitness
functions are used.

In the work presented herein we propose the application
of an incremental approach to evolution for an Evolutionary
Robotics (ER) [6] model, aimed to the development of
autonomous controllers for MAVs (Micro-unmanned Aerial
Vehicles). Incremental evolution can be seen as a way to
force the evolutionary algorithm used to generate a punc-
tuated equilibrium evolutionary dynamics, thus manually
directing the evolution toward the desired goal following
incremental steps.

The remainder of this paper is structured as follows. In
the opening section we provide a brief introduction about
the usage of incremental approaches within the robotics and,
more specifically, Evolutionary Robotics fields. Section II
describes the functioning of the ER model employed as basis
for the work presented herein and show the results obtained
by non-incremental evolutionary runs of the corresponding
computer simulator. Section III illustrates the characteristics
of the incremental approach adopted and illustrates the
results it has generated, performing a comparison with those
obtained through direct evolution. The results are then dis-
cussed in details in Section IV, and the following conclusions
are drawn in Section V.

A. Incremental evolution in autonomous robotics
The idea of using an incremental approach to evolution is

very well known in the autonomous robotics and evolution-
ary computation fields. Gomez and Miikkulainen [7] describe
the advantages of incremental evolution already back in
1997, mentioning among others the possibility offered by this
approach for evolving behaviours otherwise not obtainable,
as well as the better generalisation capabilities exhibited by
controllers designed following this paradigm. But the origin
of incremental evolution can be dated back even further.

TAROS 2010

239



Rodney Brooks, for example, taking inspiration from his
previous work on behavior-based robotics, was among the
firsts to propose an incremental approach to be used within
the genetic programming domain in 1992 [8]. This should
not be surprising taking into account the fact that Brook’s
subsumption architecture itself [9] could be easily seen as a
way to mimic incremental evolution, building increasingly
complex behavioural modules on top of simpler ones. A
tribute must then be payed to Inman Harvey’s and his
research group in Sussex for their studies on the SAGA
(Species Adaptation GAs) framework [10]. Thanks to its
work, Harvey’s group - that could be considered the ’father’
of the incremental approach to evolution in autonomous
robotics - has provided a coherent theoretical framework for
incremental evolution. Framework that has been used by a
significant number of researchers all over the world as basis
for their works.

During more recent times, Mouret and Doncieux [11]
have attempted to make order into the field, providing
a classification of the possible approaches to incremen-
tal evolution in autonomous robotics in four categories:
(1) ’staged evolution’, (2) ’environmental complexification’,
(3) ’behavioural decomposition’, and (4) ’fitness shaping’.
Staged evolution employs multiple fitness functions that
correspond to multiple sub-tasks of increasingly difficulty:
the population is initially evolved to perform the simplest
task, then the fitness function is modified leading to the
solution of the second task, and so on. Environmental com-
plexification is similar to staged evolution, but the complexity
of the task can be modified continuously operating on certain
parameters. Behavioural decomposition (also called modular
evolution) relies on the decomposition of a neural controller
into separate task-based sub-controllers, each of these is
evolved independently from the others. An evolutionary
algorithm then combine all of these modules into a master
neurocontroller. Finally, fitness shaping uses a weighted sum
of multiple evaluation criteria in order to create a fitness
gradient that evolution tries to follow.

As from the above classification, incremental evolution
does not necessarily involve a progressive complexification
of the controller architecture, although this is frequently the
case especially when neural network are employed. Usages
of this approach are abundant in literature. A good example
consists in Stanley and Miikkulainen’s work [12], where they
present the NEAT (NeuroEvolution of Augmenting Topolo-
gies) method, a framework for evolving neural network
topologies along with synaptic weights. The results they have
obtained applying NEAT on a reinforcement learning task
used as benchmark demonstrate how this approach can out-
perform those based on fixed neural networks topologies. In
Stanley’s case, the topology of the network changes over time
following evolutionary dynamics. But it is also common the
case in which is the experimenter who decides the topology
the ’global’ controller must have, manually joining various
sub-modules dedicated to different functions. Togelius [13]
(also reviewed in [14]) provides a further classification based
on the possible ways in which different neural modules

could be incrementally attached to an existing controller. He
defines ’incremental evolution’ as the evolution of a one layer
network using multiple fitness functions, ’modularised evolu-
tion’ as the evolution of multiple layers or multiple networks
with a single fitness function, and ’layered evolution’ as the
evolution of a multi-layered network using multiple fitness
functions, specific for each layer. On this basis, Tomko and
Harvey [14] have pointed out that it is also of fundamental
importance to consider how new units/modules are connected
to the main controller during incremental evolution. Their
findings highlight the detrimental effect generated by the
use of random large connection weights, rather suggesting
the linkage of additional neural modules using connection
weights with zero values.

As reviewed by recent researches carried out by Petrovic
[15], [16], many works that can be found within the abundant
Evolutionary Robotics literature have employed, to different
extents, an incremental approach to evolution. The topics are
as differentiate as possible: from the control of unmanned
aerial vehicles [1] to 6-legged robots [17], passing through
artificial vision systems [18] and autonomous learning [19].
Though, most of the published works simply justify the
reason for using an evolutionary approach as consequence
of non-better specified ’issues’ in evolving the desired
behaviour through direct evolution. Rarely a quantitative
analysis of the advantages coming from the adoption of an
incremental approach is provided. One of the few exceptions
to this trend consists in the work carried out by Walker [20],
who performs an accurate comparison between the perfor-
mances generated by a direct and an incremental methods
for a multi-variable symbolic regression problem. Walker
interestingly takes into account the full ’computational costs’
of both approaches, intended as the number of evaluations of
the fitness formula required by the two alternatives. The re-
sults he collected demonstrate that no significant advantages
in terms of full computational costs are guaranteed by the
adoption of an incremental approach. Another recent inter-
esting study, leading to similar evidences, is the one carried
out by Christensen and Dorigo [21] comparing the perfor-
mances generated by two popular approaches to incremen-
tal evolution (behavioral decomposiition and environmental
complexity increase) against the results obtained through
several non-incremental evolutionary algorithms. According
to their results none of the incremental evolutionary strategies
perform any better than the non-incremental methodologies.
This stream of criticisms seems to have had an effect also
on a fierce supporter of the incremental approach as Harvey,
that in his already mentioned work states how - according
to the analysis carried out - incremental evolution seems to
outperform direct evolution only under specific conditions.

In conclusion literature presents results supporting both
the arguments, with a recent increase in the number of works
that look at the phenomena with a skeptical eye. Anyway,
the impression is that it is still extremely difficult to provide
a definitive answer to the dilemma whether incremental
evolution is ’better’ or not than direct evolution. The study
presented herein aims to give an additional contribute to the

TAROS 2010

240



topic, with the awareness of not being able to provide any
conclusive answer due to the amount of variables that should
be taken into account for a comprehensive and definitive
analysis.

II. THE SIMULATION MODEL

The computer model [22], [23] we use in this paper as
testbed scenario is aimed at the automated design of au-
tonomous controllers for MAVs and implemented according
to the Evolutionary Robotics approach. The task the MAVs
are subject to consists of navigation toward a certain target
area - within a three-dimensional obstacle-free environment
- relying on a mixture of local and global information.
The assumption underlying the model consists in a high
level system - aware of the location of the target area -
always available and able to broadcast this information in
real-time to the aircraft. The MAVs can then match this
knowledge with proprioceptive information related to their
current position and orientation, finding in this way the path
to be followed for reaching the target area.

The virtual reference environment is a three-dimensional
area with size 1,000 (X) x 1,500 (Z) x 600 (Y) graphical
units (GUs)1. The aircraft have an approximate length of 3.5
GUs, while the target is constituted by a sphere with a 15
GUs radius.

A. The neural architectures used
Twelve different topologies of feed-forward neural net-

works have been tested as controllers for the MAVs (see
Table I). The various architectures differ from each other
because of the rotations the aircraft can perform (yaw only,
yaw + pitch, yaw + pitch + roll), the absence/presence
of a layer of hidden units, and the input encoding used
(continuous rather than discrete).

TABLE I
NEURAL NETWORK ARCHITECTURES USED

Arch. Pitch Roll Hid. Input
1 No No No D
2 No No No C
3 Yes No No D
4 Yes No No C
5 Yes Yes No D
6 Yes Yes No C
7 No No Yes D
8 No No Yes C
9 Yes No Yes D
10 Yes No Yes C
11 Yes Yes Yes D
12 Yes Yes Yes C

Common among all the architectures is a basic structure
composed of a set of input neurons2 encoding the MAV-

1Irrlicht, the 3D graphical engine software used for building the model,
considers the height as the Y axis.

2We use the term ’set’, because of the different encoding used: only one
neuron is employed when the input information is encoded continuously,
4 are used instead when the same information is discretised and encoded
according to the Gray Code. The only exception to this trend is the input
information related to the roll status, which is discretely encoded using a
single neuron.

target distance and the horizontal angle between the two,
as well as two output units. One of these output neurons
is continuous and generates the yaw rotation in the time-
unit; the other one is Boolean and must be activated by the
MAV when it has reached the target area in order to signal
the accomplishment of the mission. This unit can only be
activated once per mission.

The sets of different rotation axis employed clearly have
an impact on the architecture of the neural controller, con-
cerning both the input and the output layers. Each rotation
requires a specific output unit in order to be executed, as well
as a set of input neurons carrying the information required
by the MAV to perform the rotation in the proper way.
In the basic configuration mentioned above (yaw only), the
controller receives in input the horizontal angle to the target
(calculated according to the MAV’s heading). The possibility
of pitching requires an additional input neuron feeding the
network with the information related to the vertical MAV-
target angle. Finally, when rolling is possible, the MAV needs
to know its current roll status in order to predict the outcome
of any further rotation (a 1 degree pitch when the roll angle is
0 produces a complete different results than when the MAV is
upside down, i.e. 180 degrees). Figure 1 shows the topology
of one of these controllers.

Fig. 1. Example of a NN controller. The architecture above corresponds
to nr. 5.

All of the non-input and non-Boolean neurons belonging
to the network get activated according to a tan-sigmoid func-
tion (slope 1.0), which output values are within [−1.0;+1.0].
Summation is the only aggregation function used. For topolo-
gies having a hidden layer, all the intermediate neurons (10
for every architecture) are associated with a bias value.

B. Experimental setups and evolutionary alghoritm details

Three experimental setups, labeled A, B, and C respec-
tively, have been elaborated.

In scenario A a single MAV has to reach the target
area, without exiting from the environment boundaries, and
activate its Boolean output neuron once got close enough.
Setup B is exactly the same as A, with the only difference

TAROS 2010

241



consisting in that the target area now moves attempting to
’escape’ from the approaching aircraft. When the MAV gets
closer than 35 GUs to the target, the latter moves away
choosing - among 26 possible equidistant final positions
- the one maximising its distance from the robot. The
starting population used in these two setups consists in
30 individuals (a relatively small population, for which we
have taken inspiration from the micro-bial approach [24]),
with connection weights and biases for their controllers
randomly assigned at the beginning of the evolution within
the [−10.0;+10.0] range. Each controller is tested for four
epochs, starting each of these from a different position and
with the target area randomly dislocated. A MAV starts a test
epoch with 5,000 energy units (EU) available; during each
time-step it consumes 1 EU, while moving 2 GU along its
heading direction. The rotations generated by the controller
in the time-unit are included into the [−3.0;+3.0] range. It
is worth noting that, in order to simulate a more realistic
flying behaviour, every time the aircraft performs a yaw
a corresponding amount of roll is automatically applied3.
As mentioned above, the Boolean output can be activated
only once during the entire individuals life-span. When this
neuron turns to 1, as well as when the MAV exits from the
environment boundaries or runs out of energy, the current
test epoch is immediately considered concluded.

Once all the members of the current generation have
been evaluated, the five individuals having scored the best
performance according to the fitness function in use (1) are
selected for reproduction. The best one is copied to the
next generation without any modifications (elitism), while
the other four are subjected to a process of random mutation
which affects each of their genes - with probability 0.1 -
by a random value picked within the [−0.05;+0.05] range.
The genome is implemented via parametric encoding, with
each gene constituted by a real value and representing either
a connection weight or a bias. Five new individuals, with a
random set of connection weights and biases, are introduced
at any new generation to reduce the risk of premature
convergence within the population. The process is iterated
for a certain amount of generations and then repeated from
the scratch for a few times (we will call each of these runs an
evolutionary seed) in order to obtain results the less affected
by randomness as possible.

Scenario C is slightly different than the previous two. Now
teams of 4 MAVs, sharing the same controller within each
squad, are used in place of single individuals. The target is
a non-movable one, but it has to be reached at the same
time (i.e., within a restricted amount of time-steps, since the
simulator works in discrete time) by two or more MAVs
in order for the test to be concluded successfully. To cope
with this task, the controllers have been made more complex,
with the insertion of two additional input neurons. Both of
these neurons are Boolean and they get activated respectively
when: (a) there is a teammate within a 25 GUs distance; (b)

3This only applies to architectures where roll is used, namely 5, 6, 11,
and 12.

the target is in damaged status (i.e., a MAV has recently
approached it and activated its end operation unit when
situated at a proper distance). The target area starts each
test epoch in a non-damaged status. When it is successfully
approached by a MAV, its state switches to damaged and
does not change unless 75 time-steps have passed since
the last MAV approaching, in which case it returns to the
previous non-damaged status.

From a genetic algorithm point of view, the modifications
respect to the previous scenario are minor. The teams are
tested for a longer amount of time (8 epochs rather than 4),
each MAV starts with a larger amount of energy available
(15,000 EUs instead than 5,000) and the fitness formula has
required a few adjustments (see Equation(2)).

The fitness formulas used in these two scenarios are the
following:

fitness = α+ β ∗ 100 (1)

fitness = 〈α〉+ γ ∗ 50 + β ∗ 100 (2)

Equation (1) involves two parameters: α, which represents
the average value - across the four epochs of testing - for the
differential between the MAV-target distance at the beginning
and at the end of the tests (thus representing the distance
covered on the way to the target); β, indicating the overall
number of tests succeeded. α is set to 0 in case the MAV
has concluded the test because exited from the environment
boundaries or ran out of energy, and assumes non-zero values
when the end test neuron has been used.

Equation (2) adds a new parameter to (1), γ, which
represent the amount of tests concluded half-successfully, i.e.
with at least one MAV managing to properly approach the
target, but not two or more at the same time. Furthermore
α has been modified to 〈α〉, thus indicating that it now
represents the average distance covered by all the four MAVs
during the eight test epochs.

C. Basic results for A, B, and C setups
Evolutions in scenarios A and B have been run for dif-

ferent amounts of generations according to the complexity
(intended as the number of connection weights) of the neural
networks used: 5,000 generations for architectures 1, 2,
7, and 8; 10,000 generations for 3, 4, 9, and 10; 20,000
generations for 5, 6, 11, and 20. Given Ms the speed of the
MAV, five different evolutionary runs have been performed
for each architecture in scenario B, with the target moving at
speeds Ts equal to Ms

5 , Ms
4 , Ms

3 , Ms
2 and Ms respectively.

The results for scenario A are reported in Table II, while
Tables III and IV show the outcome of the simulations
carried out within the B scenario for Ts equal to Ms

2 and Ms
3 .

The reasons for considering this subset of the B simulations
only are discussed in details in [23]. Essentially, with targets
moving at Ms the MAVs can not ever perform the task
successfully, since the target has an advantage in terms of
freedom of movements compared to the aircraft. At the same
time, speeds as Ms

3 , Ms
4 , and Ms

5 generate quite similar
results, with significantly higher success rates than those

TAROS 2010

242



obtained by the aircraft when tackling targets travelling at
Ms
2 . Ms

3 could then be used as representative for all the
values of Ms smllaer than Ms

2 . The two tables show the
average fitness values scored by the entire population at the
end of the evolution4, as well as the maximum (i.e., the best
individual’s fitness). The average and maximum success rates
(intended as percentage of tests concluded successfully) are
also reported. Since at any given generation 5 new random
individuals are introduced (corresponding to 16.66% of the
entire population), the maximum average success rate which
is legitimate to expect can not be higher than 83.34%.

TABLE II
RESULTS FOR THE A SETUP

Arch. Av. fitness Max fitness Av. succ. rate Max succ. rate
1 978.4878 1420.9 0.7976 1
2 989.2763 1426.5 0.8171 1
3 904.1651 1413.3 0.6963 0.9992
4 858.6135 1331.4 0.5677 0.8916
5 749.7256 1309.5 0.4891 0.9419
6 602.7285 1050.9 0.1857 0.4693
7 1005.3 1428.6 0.8235 1
8 997.0632 1430.6 0.8236 1
9 881.6735 1399.3 0.6665 0.999

10 934.6812 1413.7 0.7247 0.9986
11 688.2933 1272 0.4209 0.8556
12 623.8767 1111.8 0.3104 0.6556

TABLE III
RESULTS FOR THE B NON-INCREMENTAL SETUP (Ts = Ms

2 )

Arch. Av. fitness Max fitness Av. succ. rate Max succ. rate
1 976.2088 1421 0.8001 1
2 976.9735 1420 0.7823 1
3 855.3585 1386.6 0.5982 0.9979
4 744.2322 1252 0.4076 0.8197
5 645.5993 1158.3 0.2849 0.5969
6 551.6119 996.7838 0.1597 0.396
7 983.8354 1421.7 0.7914 1
8 933.4124 1430.4 0.814 1
9 756.3261 1323.7 0.5035 0.9642

10 851.7244 1336.5 0.5376 0.8724
11 643.1058 1126.9 0.1807 0.5829
12 700.0007 1162.4 0.3384 0.6609

As expected, the complexity of the controllers used affects
the performance of the MAVs. For the simplest 2D scenario
(controllers 1, 2, 7, and 8) all the topologies produces good
results, leading to MAVs able to successfully perform the
task 100% of times. The 3D scenario where only yaw and
pitch are allowed (controllers 3, 4, 9, and 10) also prove to
be not particularly challenging for the evolutionary process.
The average success rate for the entire population slightly
decreases, but the best controllers still can, among all the
cases, perform at least 80% of tasks with success. Things get
more complicated when using controllers 5, 6, 11, and 12
(i.e., adding roll among the possible rotations available to the
aircraft) and the results are contrasting also. In Scenario A the

4This value is calculated as the average for the last 50 generations, over
10 evolutionary seeds.

TABLE IV
RESULTS FOR THE B NON-INCREMENTAL SETUP (Ts = Ms

3 )

Arch. Av. fitness Max fitness Av. succ. rate Max succ. rate
1 979.821 1422.8 0.7948 1
2 991.5413 1426.2 0.8177 1
3 889.1834 1407.7 0.6918 1
4 787.9387 1258.3 0.4385 0.7998
5 673.2221 1212.7 0.3354 0.7137
6 596.2457 1063.5 0.2001 0.5255
7 995.336 1428.3 0.8081 1
8 994.9137 1431.4 0.8153 1
9 806.9692 1354.3 0.5497 0.9785
10 951.2047 1417 0.7276 1
11 577.6951 1090.6 0.1955 0.4829
12 744.1598 1241.6 0.4435 0.8123

discretisation of the input information seems to have a clearly
positive impact on the performances of the controllers. For
Scenario B we find instead evidence of both positive and
negative impacts. Curiously, some of the controllers (e.g., nr.
10) have evolved with more accurate behaviours for Scenario
B (Ts =

Ms
3 ) than for Scenario A.

The evolution in Scenario C, due to the more complex
behaviour to evolve, has been run for: 10,000 generations
for architectures 1, 2, 7, and 8; 20,000 generations for
architectures 3, 4, 9, and 10; 40,000 generations for archi-
tectures 5, 6, 11, and 12. The results from this setup are
presented in Table V. In this case the table contains an
extra column indicating the percentage of tests concluded
half-successfully, i.e. with at least one MAV having properly
reached the target, but not two or more MAVs having done
the same in a coordinated fashion.

TABLE V
RESULTS FOR THE C NON-INCREMENTAL SETUP

Arch. Av. fit. Max fit. Av. s. rate Max s. rate Half s. rate
1 1106.8 1701 0.4672 0.8814 0.3669
2 1011.4 1505.3 0.3164 0.5818 0.4316
3 709.269 1104.2 0.0648 0.2834 0.5914
4 683.148 948.381 0.0037 0.0636 0.7636
5 645.664 1015.2 0.0533 0.239 0.5794
6 582.288 822.920 0.002 0.0386 0.5128
7 1008.4 1628.3 0.4266 0.8425 0.2926
8 1228.2 1834.6 0.5391 0.9184 0.1754
9 743.587 1131.5 0.0747 0.2844 0.6201

10 752.741 1153.4 0.0662 0.2778 0.647
11 562.598 917.089 0.0365 0.1855 0.4713
12 764.835 1123.9 0.058 0.2316 0.677

Not surprisingly, these results highlight worse performance
for the controllers than those obtained within Scenarios A
and B. The new task is indeed more complicate, since
on top of the basic navigation behaviour the aircraft are
now also required to coordinate among themselves. The
difficulty is testified by the data relative to the maximum
success rate obtained by the controllers in C, that score good
performances only for architectures 1, 2, 7, and 8, i.e. those
where the limited rotations available to the MAVs make
the task relatively easier. Nonetheless, from a behavioural

TAROS 2010

243



perspective it is interesting to observe the strategies evolved
by the successful controllers within this setup (see Figure
2). Rather than looking for each other, assemble and then
fly together toward the target, the team members navigate
independently to the target area. Once the first arrives there
it keeps circling around the target waiting for a teammate
to arrive. When at least two MAVs are in proximity of the
target, their behaviour suddenly changes: they aim to the
target and activate their dedicated output Boolean unit.

−500

0

500

−500

0

500

0

100

200

300

400

500

600

 

X

Flight paths followed by individuals evolved with neural controller #10

Y
 

Z

Starting position for MAV #0

Starting position for MAV #1

Starting position for MAV #2

Starting position for MAV #3

Position of the target

Flight path followed by MAV #0

Flight path followed by MAV #1

Flight path followed by MAV #2

Flight path followed by MAV #3

End position for MAV #0

End position for MAV #1

End position for MAV #2

End position for MAV #3

Fig. 2. Flight paths followed by the members of a MAVs team using
controller nr. 10 within the C setup. It is possible to see how the MAVs
converge to the target and then keep flying around it while waiting for the
proper conditions to appear.

III. THE INCREMENTAL APPROACH

The incremental approach adopted in this work is partic-
ularly straightforward. Evolving from Scenario A to B the
connection weights and biases of the individuals belonging
to the last generation of the best population evolved in A
are loaded from the memory and used as starting point
for the new evolutionary process. Things are slightly more
complicated moving from Scenario A to C, because of the
different network topologies used in the latter. In this case,
the connection weights coming from the two extra input
neurons are added to the A controllers and their values are set
to 0 at the beginning of the second stage of the evolutionary
process (as suggested in [14]).

A. Results of evolution from scenario A to B
Starting from populations of individuals already evolved

within the A scenario, the results demonstrate how 5,000
generations of further evolution are enough to allow these
individuals to generalise their target reaching abilities to
moving targets as well. The only situations for which this
does not happen are when controllers 5 and 6 are used
(furthermore, for these two architecture the performance of
the controller dramatically decreases). Also controller 10, for
a target moving at half the speed of the MAVs, generates
worst results when incrementally evolved than when direct

evolution is employed. The absolute results are summarised
in Tables VI and VII. Tables IX and X show the comparison
between the incremental and the non-incremental results.

TABLE VI
RESULTS FOR THE A-TO-B INCREMENTAL SETUP (Ts = Ms

2 )

Arch. Av. fitness Max fitness Av. succ. rate Max succ. rate
1 955.6403 1428.1 0.82 1
2 1002.6 1434.1 0.8133 1
3 864.5446 1378.6 0.5477 0.985
4 783.5742 1321 0.5264 0.9667
5 602.3626 1110.4 0.1358 0.4975
6 579.5491 970.2302 0.0116 0.1485
7 1007.4 1435.3 0.8228 1
8 999.0517 1434 0.8164 1
9 877.6665 1393.3 0.6306 0.996

10 688.5148 1149.1 0.2359 0.5317
11 554.3824 1167.4 0.3026 0.8108
12 772.3867 1298.9 0.4516 0.9472

TABLE VII
RESULTS FOR THE A-TO-B INCREMENTAL SETUP (Ts = Ms

3 )

Arch. Av. fitness Max fitness Av. succ. rate Max succ. rate
1 952.8566 1408.7 0.7546 0.9965
2 994.8059 1432.1 0.8183 1
3 928.2931 1413.3 0.6271 0.9985
4 851.2675 1359.3 0.5777 0.957
5 624.5276 1143.5 0.1971 0.5888
6 597.6601 964.9632 0.0053 0.0867
7 978.4332 1424.5 0.7931 1
8 995.912 1432.1 0.8222 1
9 887.8627 1400.9 0.6454 1

10 741.8259 1321.9 0.4466 0.9405
11 611.1595 1237.6 0.3862 0.9103
12 796.4933 1333.7 0.5018 0.9642

B. Results of evolution from scenario A to C

In this case the incremental evolutionary process has lasted
for 10,000 generations, twice the duration of the one used
for the B scenario, due to the more sophisticated neural
architectures used. The absolute results are summarised in
Table VIII, while Table XI show the comparison between
the incremental and the non-incremental results. Just at a
first glance it is possible to see how the controllers evolved
do not score impressive results.

IV. ANALYSIS OF THE INCREMENTAL RESULTS

For what concerns incremental evolution from A to B,
interestingly, the critical variable for the success of the
incremental approach seems to be the complexity of the
neural architecture used. For simple networks, as controllers
1-6 (feed-forward NNs without hidden layers) are, the
effects seems to be limited. More complex architectures
benefited much more instead from the incremental process.
This phenomena is evident comparing the results scored by
architectures 5 and 6 against controllers 11 and 12. The
average success rate of controller 5 dropped by 52.33%
and 41.23% for Ts = Ms

2 and Ts = Ms
3 respectively,

TAROS 2010

244



TABLE VIII
RESULTS FOR THE A-TO-C INCREMENTAL SETUP

Arch. Av. fit, Max fit. Av. succ. Max succ. Half succ.
1 1139.8 1725.5 0.4893 0.9001 0.3401
2 1347.2 1904.7 0.6257 0.9903 0.2062
3 692.937 1046.9 0.0477 0.2299 0.6816
4 512/0017 755.597 0.0023 0.0428 0.6639
5 475.425 742.073 0.0058 0.0711 0.4788
6 545.109 929.720 0.0289 0.1873 0.3052
7 1196.9 1776.6 0.5288 0.9289 0.3058
8 1386.5 1921.5 0.6543 0.9962 0.1782
9 699.835 1076.4 0.0731 0.2693 0.606
10 710.436 1058.3 0.0409 0.1896 0.6722
11 400.554 654.008 0.0084 0.0646 0.3519
12 568.793 910.571 0.0309 0.1459 0.5339

while architecture 6 scored -92.74% and -97.35%. Vicev-
ersa, controller 11’s performance increased by 67.46% and
97.54%; architecture 12 improved as well, scoring +33.45%
and +13.15%. The simplest architectures - as 1, and 2, but
also 7, and 8 - do not show any significant difference in the
results obtained following the two alternative approaches,
presumably because how to perform the task (which, for
these controllers, is essentially 2D navigation) is quite easy
to be learnt and direct evolution already found nearly-optimal
solutions. Things are more interesting and variegated for
the architectures of intermediate complexity, such as 3, 4,
and 95. Architectures 4 and 9 improved their performances
among all the parameters measured, for both Ts = Ms

2 and
Ts = Ms

3 . For architecture 3 the fitness values scored (both
average and maximum) are pretty similar among direct and
incremental evolution, but the average and maximum success
rates decreased.

TABLE IX
INCREMENTAL VS NON-INCREMENTAL EVOLUTION FOR THE B SETUP

(Ts = Ms
2 )

Arch. Av. fitness Max fitness Av. succ. rate Max succ. rate
1 -2.11% +0.50% +1.65% 0.00%
2 +2.62% +0.99% +4.82% 0.00%
3 +1.07% -0.58% -8.44% -1.29%
4 +5.29% +5.51% +29.15% +17.93%
5 -6.70% -4.14% -52.33% -16.65%
6 +5.06% -2.66% -92.74% -62.50%
7 +2.40% +0.96% +3.97% 0.00%
8 +7.03% +0.25% +0.29% 0.00%
9 +16.04% +5.26% +25.24% +3.30%

10 -19.16% -14.02% -56.12% -39.05%
11 -13.80% +3.59% +67.46% +39.10%
12 +10.34% +11.74% +33.45% +43.32%

Opposite results have been obtained by the incremental
evolution from A to C, i.e. the further evolution of an
architecture specialised in basic navigation to perform a
cooperative task. In this case, the only controllers that have
gained advantage from the second evolutionary process have

5For the purposes of this analysis, we do not take into account controller
10, for which incremental evolution has not been able to generate a proper
behaviour.

TABLE X
INCREMENTAL VS NON-INCREMENTAL EVOLUTION FOR THE B SETUP

(Ts = Ms
3 )

Arch. Av. fitness Max fitness Av. succ. rate Max succ. rate
1 -2.75% -0.99% -5.06% -0.35%
2 +0.33% +0.41% +0.07% 0.00%
3 +4.40% +0.40% -9.35% -0.15%
4 +8.04% +8.03% +31.74% +19.65%
5 -7.23% -5.71% -41.23% -17.50%
6 +0.24% -9.27% -97.35% -83.50%
7 -1.70% -0.27% -1.86% 0.00%
8 +0.10% +0.05% +0.85% 0.00%
9 +10.02% +3.44% +17.41% +2.20%

10 -22.01% -6.71% -38.62% -5.95%
11 +5.79% +13.48% +97.54% +88.51%
12 +7.03% +7.42% +13.15% +18.70%

been the simplest ones: 1, 2, 7, and 8. All the others
architectures (with the only exception of controller 6, for
which direct evolution did not succeed) have seen their
performances dropping consistently, both in terms of average
and maximum fitness, as for what concerns the success rate.

TABLE XI
INCREMENTAL VS NON-INCREMENTAL EVOLUTION FOR THE C SETUP

Arch. Av. fit. Max fit. Av. s. rate Max s. rate Half s. rate
1 +2.98% +1.44% +4.73% 2.12% -7.30%
2 +33.20% +26.53% +97.76% +70.21% -52.22%
3 -2.30% -5.19% -26.39% -18.88% +15.25%
4 -25.05% -20.33% -37.84% -32.70% -13.06%
5 -26.37% -26.90% -89.12% -70.25% -17.36%
6 -6.39% +12.98% +1345% +385.23% -40.48%
7 +18.69% +9.11% +23.96% +10.26% +4.51%
8 +12.89% +4.74% +21.37% +8.47% +1.60%
9 -5.88% -4.87% -2.14% -5.31% -2.27%
10 -5.62% -8.25% -38.22% -31.75% +3.89%
11 -28.80% -28.69% -76.99% -65.18% -25.33%
12 -25.63% -18.98% -46.72% -37.00% -21.14%

V. CONCLUSION AND FUTURE WORKS

As we have discussed in Section I, it is difficult to draw
from a single experiment definitive conclusions about the
validity of a complex and widely applicable approach such as
incremental evolution. Not only the particular task analysed,
but also countless variables seem to have an impact on
the profitable applicability of an incremental approach, as
demonstrated by the study presented herein. The challenge
consists in identifying these variables and provide a theoreti-
cal framework - a set of guidelines - that researchers willing
to experiment in incremental evolution could rely on in the
future in order to fully benefit from this approach.

Based on the results described in this paper, we could
suggest two aspects deserving further investigations. First, it
seems to be necessary that the evolutionary algorithm might
be free to explore a large space of solutions. Incremental
evolution performed from Scenario A to B has been particu-
larly beneficial for the more complex architectures (i.e., those
characterised by a larger amount of connection weights),

TAROS 2010

245



while generating limited results for the others. Second, the
incremental process has to go through a series of steps very
close to each other. This has been demonstrated by the
fact that direct evolution, in the testbed scenario discussed
herein, has clearly outperformed the incremental approach
for Scenario C.

The findings resulting from this work will be taken into
account for the next steps of the project, involving the
testing of the evolutionary controllers developed in computer
simulations on physical robotics platforms. This work will
be carried out during the next few months in collaboration
with the EPFL’s Laboratory of Intelligent Systems (LIS) in
Lausanne, Switzerland. The platform that will be used for
these experiments is the senseFly’s swinglet6 [25], a robotic
aircraft which has already been tested for various tasks and
that seem particularly well fit for successfully hosting such
a kind of autonomous controllers.

VI. ACKNOWLEDGMENTS

Effort sponsored by the Air Force Office of Scientific
Research, Air Force Office Material Command, USAF under
grant number FA8655-07-1-3075.

The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily
representing the official policies and endorsements, either
expressed or implied, of the Air Force Office of Scientific
Research or the U.S. Government.

The U.S. Government is authorized to reproduce and
distribute reprints for government purpose notwithstanding
any copyright notation thereon.

REFERENCES

[1] G. Barlow, C. Oh, and E. Grant, “Incremental evolution of autonomous
controllers for unmanned aerial vehicles using multi-objective genetic
programming,” Proceedings of the 2004 IEEE Conference on Cyber-
netics and Intelligent Systems, 2004.

[2] S. Gould, The Structure of Evolutionary Theory. Belknap Press of
Harvard University Press, 2002.

[3] F. Baumgartner and B. Jones, Agendas and Instability in American
Politics. The University of Chicago Press, 1993.

[4] C. Loch and B. Huberman, “A punctuated-equilibrium model of
technology diffusion,” Management Science, vol. 45, no. 2, pp. 160–
177, 1999.

[5] K. Lindgren, “Evolutionary phenomena in simple dynamics,” Artificial
Life II, pp. 295–312, 1991.

[6] S. Nolfi and D. Floreano, Evolutionary Robotics. The Biology, Intel-
ligence, and Technology of Self-Organizing Machines. Cambridge,
MA: MIT Press, 2000.

[7] F. Gomez and R. Miikkulainen, “Incremental evolution of complex
general behavior,” Adaptive Behavior, no. 5, pp. 317–342, 1997.

[8] R. Brooks, “Artificial life and real robots,” Toward a Practice of
Autonomous Systems: Proceedings of the First European Conference
on Artificial Life, pp. 3–10, 1992.

[9] ——, “A robust layered control system for a mobile robot,” IEEE
Journal of Robotics and Automation, vol. 2, no. 1, pp. 14–23, 1986.

[10] I. Harvey, “Artificial evolution: A continuing saga,” Evolutionary
Robotics. From Intelligent Robotics to Artificial Life, vol. 2217, pp.
94–109, 2001.

[11] J.-B. Mouret, S. Doncieux, and J.-A. Meyer, “Incremental evolution
of target-following neuro-controllers for flapping-wing animats,” From
Animals to Animats 9. Proceedings of SAB 2006, the 9th International
Conference on Simulation of Adaptive Behavior, pp. 606–618, 2006.

6http://www.sensefly.com/products/swinglet

[12] K. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary Computation, vol. 10, no. 2, pp.
99–127, 2002.

[13] J. Togelius, “Evolution of a subsumption architecture neurocontroller,”
Journal of Intelligent and Fuzzy Systems, vol. 15, no. 1, pp. 15–20,
2004.

[14] N. Tomko and I. Harvey, “Do not disturb: Recommendations for incre-
mental evolution,” Proceedings of ALIFE XII, the 12th International
Conference on the Synthesis and Simulation of Living Systems, 2010.

[15] P. Petrovic, “Overview of incremental approaches to evolutionary
robotics,” Proceedings of the 1999 Norwegian Conference on Com-
puter Science, pp. 151–162, 1999.

[16] ——, “A step towards incremental on-board evolutionary robotics,”
Proceedings of SCAI’01, the Seventh Scandinavian Conference on
Artificial Intelligence, pp. 3–12, 2001.

[17] D. Filliat, J. Kodjabachian, and J.-A. Meyer, “Incremental evolution
of neural controllers for navigation in a 6-legged robot,” Proceedings
of the Fourth International Symposium on Artificial Life and Robotics,
1999.

[18] I. Harvey, P. Husbands, and D. Cliff, “Seeing the light: Artificial
evolution, real vision,” From Animals to Animats 3, Proceedings of
SAB 1994, the 3rd International Conference on Simulation of Adaptive
Behaviour, pp. 392–401, 1994.

[19] E. Tuci, M. Quinn, and I. Harvey, “An evolutionary ecological ap-
proach to the study of learning behavior using a robot-based model,”
Adaptive Behavior, vol. 10, no. 3-4, pp. 201–221, 2002.

[20] M. Walker, “Comparing the performance of incremental evolution to
direct evolution,” Proceedings of the 2nd International Conference on
Autonomous Robots and Agents, pp. 119–124, 2004.

[21] A. Christensen and M. Dorigo, “Incremental evolution of robot con-
trollers for a highly integrated task,” From Animals to Animats 9, pp.
473–484, 2006.

[22] F. Ruini and A. Cangelosi, “An evolutionary robotics 3d model for
autonomous mavs navigation, target tracking and group coordination,”
Proceedings of IJCNN 2010, International Joint Conference on Neural
Networks, 2010.

[23] ——, “Extending the evolutionary robotics approach to flying ma-
chines: An application to mav teams,” Neural Networks, no. 22, pp.
812–821, 2009.

[24] I. Harvey, P. Husbands, D. Cliff, A. Thompson, and N. Jakobi, “Evo-
lutionary robotics: the sussex approach,” Robotics and Autonomous
Systems, vol. 20, pp. 205–224, 1996.

[25] S. Leven, J.-C. Zufferey, and D. Floreano, “A minimalist control
strategy for small uavs,” Proceedings of IROS 2009, the IEEE/RSJ
International Conference on Intelligent RObots and Systems, pp. 2873–
2878, 2009.

TAROS 2010

246


