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Countless variables seem to have an impact on the profitable applicability of an incremental approach to 
evolution. The challenge consists in identifying these variables and to provide a theoretical framework - a set 
of guidelines - that researchers willing to investigate in this area could rely on in the future in order to fully 
benefit from this approach. Based on the results obtained, we can suggest two critical aspects that must be 
taken into account. First, it seems to be necessary that the evolutionary algorithm might be free to explore a 
large space of solutions in order for an incremental approach to be beneficial. Incremental evolution applied 
from Scenario A to B has generated significant improvements for the more complex architectures (i.e., those 
characterised by a larger amount of connection weights), while producing limited benefits for the others. 
Second, to work properly the incremental process has to go through a series of steps very close to each 
other, i.e. the incremental complexification of the tasks must follow a smooth path, consisting of minor 
modifications from one step to the next one This has been demonstrated by the fact that direct evolution, in 
the testbed scenario, has clearly outperformed the incremental approach for Scenario C.
Experiments currently ongoing are aimed to test on a physical robotics platform (namely the senseFly’s 
Swinglet portrayed on the right) the qualitative/‘behavioural’ differences generated by the controllers evolved 
according to the different evolutionary methodologies analysed in this work.

Conclusions

Overview

In the context of evolutionary computation, we refer to ‘incremental evolution’ as ‘the process of evolving a population on a simple problem and then using 
the resulting evolved population as a seed to evolve a solution to a related problem of greater complexity’ (Barlow, 2004). Incremental evolution is an 
alternative approach to the traditional 'direct evolution' methodology, where a population of candidate solutions is evolved from the scratch to tackle a 
specific task directly aiming to the final solution.
In the work presented here we propose the application of an incremental approach for an Evolutionary Robotics (ER) (Nolfi & Floreano, 2000) model, aimed 
to the development of autonomous controllers for MAVs (Micro-unmanned Aerial Vehicles) (Ruini & Cangelosi, 2009). Incremental evolution can be seen as a 
way to force the evolutionary algorithm to generate a punctuated equilibrium evolutionary dynamics, thus manually directing the evolution toward the 
desired goal following a series of incremental steps.

Experimental setups
The task the MAVs are subject to consists of navigation toward a certain target area - within a three-
dimensional obstacle-free environment - relying on a mixture of local and global information. The 
MAVs match the knowledge about the location of the target, with proprioceptive information related 
to their current position and orientation, identifying in this way the path to be followed for reaching 
the target area.
Twelve different topologies of feed-forward neural networks have been tested as controllers for the 
MAVs. The various architectures differ from each other because of the rotations the aircraft can 
perform (yaw only, yaw + pitch, yaw + pitch + roll), the absence/presence of a layer of hidden units, 
and the input encoding used (continuous rather than discrete).
Three different scenarios have been elaborated: Scenario A consists of the the tracking of a non 
movable target by an individual MAV; Scenario B involves a moving target attempting to escape from 
the approaching MAV (5 different moving speeds Ts for the target have been tested: respectively the 
same speed Ms of the MAV, Ms/2, Ms/3, Ms/4, and Ms/5); Scenario C requires a cooperative/
coordinated operation carried out by a team of 4 MAVs that are expected to reach the target with at 
least 2 aircraft simultaneously. To achieve the desired goal, the neural network controller used in C 
relies on two additional input neurons compared to the A and B architectures.

The incremental evolution approach applied is different whether the controllers are evolved from Scenario A 
to B, rather than from Scenario A to C. Evolving from Scenario A to B the connection weights and biases of 
the individuals belonging to the last generation of the best population evolved in A are loaded from the 
computer memory and used as starting point for the new evolutionary process. Things are slightly more 
complicated moving from Scenario A to C, because of the different network topologies used in the latter. In 
this case, the connection weights coming from the two extra input neurons are added to the A controllers 
loaded from the memory and their values are set to 0 at the beginning of the second stage of the 
evolutionary process.
For what concerns incremental evolution from A to B the critical variable for the success of the incremental 
approach seems to be the complexity of the neural architecture used. For simple networks, as controllers 1-6 
(feed-forward NNs without hidden layers) are, the effects seems to be limited. More complex architectures 
benefited much more instead from the incremental process. This phenomena is evident comparing the results 
scored by architectures 5 and 6 against controllers 11 and 12. The average success rate of controller 5 
dropped by 52.33% and 41.23% for Ms/2 and Ms/3 respectively, while architecture 6 scored -92.74% and 
-97.35%. Viceversa, controller 11's performance increased by 67.46% and 97.54%; architecture 12 improved 
as well, scoring +33.45% and +13.15%. The simplest architectures - as 1, and 2, but also 7, and 8 - did not 
not show any significant difference in the results obtained following the two alternative approaches. Things 
are more interesting and variegated for the architectures of intermediate complexity, such as 3, 4, and 9. 
Architectures 4 and 9 improved their performances among all the parameters measured, for both Ms/2 and 
Ms/3. For architecture 3 the fitness values scored (both average and maximum) are pretty similar among 
direct and incremental evolution, but the average and maximum success rates decreased.
Opposite results have been obtained by the incremental evolution from A to C, i.e. the further evolution of an 
architecture specialised in basic navigation to perform a cooperative task. In this case, the only controllers 
that have gained advantage from the second evolutionary process have been the simplest ones: 1, 2, 7, and 
8. All the others architectures (with the only exception of controller 6, for which direct evolution did not 
succeed) have seen their performances dropping consistently, both in terms of average and maximum fitness, 
as for what concerns the success rate.
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