
This copy of the thesis has been supplied on condition that anyone who consults
it is understood to recognise that its copyright rests with its author and that no
quotation from the thesis and no information derived from it may be published
without the author’s prior consent.

DISTRIBUTED CONTROL FOR COLLECTIVE BEHAVIOUR IN
MICRO-UNMANNED AERIAL VEHICLES

by

FABIO RUINI

A thesis submitted to the University of Plymouth
in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

School of Computing and Mathematics
Faculty of Science and Technology

June 2011

This page has been intentionally left blank

Distributed Control for Collective Behaviour in

Micro-unmanned Aerial Vehicles

by

Fabio Ruini

Abstract

The work presented herein focuses on the design of distributed autonomous con-
trollers for collective behaviour of Micro-unmanned Aerial Vehicles (MAVs).

Two alternative approaches to this topic are introduced: one based upon the Evo-
lutionary Robotics (ER) paradigm, the other one upon flocking principles. Three
computer simulators have been developed in order to carry out the required exper-
iments, all of them having their focus on the modelling of fixed-wing aircraft flight
dynamics. The employment of fixed-wing aircraft rather than the omni-directional
robots typically employed in collective robotics significantly increases the complex-
ity of the challenges that an autonomous controller has to face. This is mostly due
to the strict motion constraints associated with fixed-wing platforms, that require a
high degree of accuracy by the controller.

Concerning the ER approach, the experimental setups elaborated have resulted
in controllers that have been evolved in simulation with the following capabilities:
(1) navigation across unknown environments, (2) obstacle avoidance, (3) tracking of
a moving target, and (4) execution of cooperative and coordinated behaviours based
on implicit communication strategies.

The design methodology based upon flocking principles has involved tests on
computer simulations and subsequent experimentation on real-world robotic plat-
forms. A customised implementation of Reynolds’ flocking algorithm has been de-
veloped and successfully validated through flight tests performed with the swinglet
MAV.

It has been notably demonstrated how the Evolutionary Robotics approach could
be successfully extended to the domain of fixed-wing aerial robotics, which has
never received a great deal of attention in the past. The investigations performed
have also shown that complex and real physics-based computer simulators are not
a compulsory requirement when approaching the domain of aerial robotics, as long
as proper autopilot systems (taking care of the ”reality gap” issue) are used on the
real robots.

Contents

Abstract 5

Table of Contents 6

List of Figures 14

List of Tables 16

List of Algorithms 17

1 Introduction 23
1.1 Contribution to knowledge . 26
1.2 Thesis outline . 29

2 Evolutionary Robotics: Neural Networks and Evolutionary Com-
putation Working Together 33
2.1 Towards Evolutionary Robotics (ER) 33

2.1.1 Autonomous robotics . 34
2.1.2 The classical approach to autonomous robotics: Shakey the

robot and the problem of planning 35
2.1.3 Behaviour-based Robotics: embodiment and situatedness . . . 38
2.1.4 Evolutionary Robotics . 41
2.1.5 A “cognitive” approach? The link with epigenetic robotics . . 49

2.2 The basics of control theory . 51
2.2.1 Feedback (closed loop) control 51
2.2.2 Feedforward (open loop) control 56

2.3 Neural Networks (NNs) . 57
2.3.1 McCulloch and Pitts’ artificial neuron (TLU) 57
2.3.2 Hebbian learning . 59
2.3.3 The properties of TLU networks: a classification example . . . 60
2.3.4 The limitations of perceptrons: dealing with non-linearly sep-

arable classes . 62
2.3.5 Multi-layer perceptrons and the backpropagation algorithm . . 65
2.3.6 Networks with memory . 66
2.3.7 Activation/transfer functions 68

2.4 Evolutionary Computation . 69
2.4.1 The terminology . 69
2.4.2 On natural/biological evolution 70
2.4.3 Evolutionary Computation: an overview 72
2.4.4 Evolution Strategies (ESs) . 73
2.4.5 Genetic Algorithms (GAs) . 74

2.4.6 Evolutionary Programming (EP) 85
2.5 Incremental evolution . 88

2.5.1 Incremental evolution in autonomous robotics 89

3 Aerial Robotics and Intelligent Control: History and Technologies 93
3.1 Unmanned flight: a brief history . 94

3.1.1 The drives for the UAVs in the military 96
3.2 UAVs and MAVs . 100

3.2.1 Unmanned Aerial Vehicles (UAVs) 100
3.2.2 Micro-unmanned Aerial Vehicles (MAVs) 107
3.2.3 Applications . 111

3.3 Aerial robotics . 122
3.3.1 Fixed-wing MAVs: basic aerodynamics, design issues, charac-

terisation and control techniques 123
3.3.2 Characterisation and attitude determination 131
3.3.3 Autopilots and autonomous control 133

4 Distributed Control for Collective Behaviour in MAV Teams: Method-
ologies, Challenges, Ethical Considerations and Safety Issues 137
4.1 Intelligent autonomous controllers for collective aerial robots: the

scientific literature . 138
4.2 Design methodologies . 146

4.2.1 Incremental geometric flight 148
4.2.2 Flocking . 149

4.3 The main challenges . 151
4.3.1 Fixed-wing aircraft: motion constraints 151
4.3.2 Obstacle avoidance . 153
4.3.3 Target tracking . 153
4.3.4 Collective behaviour, distributed control, and cooperation based

upon implicit communication 154
4.3.5 Computation time issues . 156
4.3.6 The reality gap . 157

4.4 Ethical considerations on the military employment of lethal autonomous
robots . 158
4.4.1 The laws of war and the ethics of modern conflicts 159
4.4.2 The experts’ point of view on autonomous robotics 161

4.5 Safety issues . 166
4.6 Plan for the experiments . 169

4.6.1 Defining “success” . 171
4.6.2 On the comparison with alternative design methodologies . . . 172

5 Simulation Experiments in Urban Layouts 175
5.1 Software simulator . 175

5.1.1 Common features of all simulation setups 182
5.2 Neural network controllers . 185

5.2.1 Encoding of the input information 186
5.3 Evolutionary algorithm . 187
5.4 Experiments . 188

5.4.1 Basic scenario (simulations A) 188
5.4.2 Obstacle avoidance (simulations B) 200
5.4.3 Moving target (simulations C) 212

5.4.4 Implicit cooperation (simulations D) 219
5.5 Conclusions . 231

6 Simulation Experiments in 3D Environments 235
6.1 Software simulator . 235

6.1.1 The evolutionary engine . 236
6.1.2 The viewer . 239
6.1.3 Computation issues . 241
6.1.4 Moving from 2D to 3D . 241
6.1.5 Common features of all simulation setups 242

6.2 Neural network controllers . 244
6.2.1 Encoding of the input information 245

6.3 Evolutionary algorithm . 250
6.4 Experiments . 251

6.4.1 Basic scenario (simulations A) 251
6.4.2 Moving target (simulations B) 266
6.4.3 Implicit cooperation (simulations C) 271

6.5 Experiments on incremental evolution 273
6.5.1 Basic results for A, B, and C setups 275
6.5.2 The incremental approach . 279

6.6 Conclusions . 285
6.6.1 Multi-threading . 287
6.6.2 Incremental evolution . 287

7 Flocking Behaviour: Towards Experiments on Physical Robots 289
7.1 Robotics platform used: senseFly’s swinglet 290
7.2 Software simulator . 294

7.2.1 Initial formation . 297
7.2.2 Navigation algorithms . 299
7.2.3 Flocking algorithms . 302

7.3 Moving from simulations to reality: overcoming the reality gap 310
7.3.1 Test field and coordinate systems 311
7.3.2 Leader following behaviour through explicit communication

(rendezvous) . 314
7.3.3 Flocking behaviour . 320

7.4 Conclusions . 326

8 Conclusions and Future Work 329
8.1 Conclusions . 329
8.2 Future work . 334

Bibliography 366

Appendices I

A Micro-unmanned Aerial Vehicles: a review I
A.1 AeroVironment Inc. I
A.2 Lockheed Martin . VIII
A.3 AAI Corporation . IX
A.4 Israel Aerospace Industries (IAI) . XI
A.5 Insitu . XIII

A.6 Elbit Systems . XIV
A.7 AerialRobotics . XV
A.8 Miscellaneous . XVIII
A.9 Classification . XX

B Autopilot systems XXIII
B.1 SBP400/MNAV . XXIII
B.2 Procerus Kestrel System . XXV
B.3 MicroPilot MPxx28 . XXVII
B.4 Cloud Cap Piccolo . XXVIII
B.5 UNAV 35xx and PICOPILOT . XXIX
B.6 FlexiPilot and EasyUAV . XXXI

C P-ARTS (Plymouth Advanced Robot Training Suite) XXXIII
C.1 Hardware . XXXIII
C.2 Software . XXXIV

D Mathematical operations XXXV
D.1 Distances in three dimensions . XXXV
D.2 Convert from degrees to radians and vice versa XXXV
D.3 Mean of circular quantities . XXXVI
D.4 Convert from WGS84 to ECEF navigation coordinates XXXVI

List of Figures

2.1 Shakey the robot . 36
2.2 Graphical representation of the Behaviour-based approach 39
2.3 Genghis the robot . 40
2.4 Sketch of two Braitenberg’s vehicles 42
2.5 Two real robots taking inspiration by Braitenberg’s vehicles 43
2.6 Graphical resume of how the Evolutionary Robotics approach works . 47
2.7 iCub robot . 50
2.8 Diagram of a typical feedback controller 53
2.9 Graphical representation of a McCulloch-Pitts’ neuron 58
2.10 A neural network capable of achieving classical conditioning learning 60
2.11 A TLU characterised by two inputs (x1, and x2), a threshold function,

and a y output . 61
2.12 The pattern space generated by a two-input TLU 61
2.13 The pattern space for the XOR operator 64
2.14 Example of a multi-layer NN architecture 64
2.15 Example of an Elman network . 67
2.16 Graphical representation of the fitness-proportionate roulette wheel

selection scheme . 77
2.17 Graphical examples of how mutation, inversion/variation, and single-

point crossover genetic operators work on binary genomes 80
2.18 Example of a fitness landscape for a two-gene genome 83
2.19 Graphical representation of the fitness space 85
2.20 Example of a genetic programming tree 87

3.1 Classification of UAVs based on their role 104
3.2 (a) NRL MITE2; (b) AeroVironment Black Widow 109
3.3 Classification of the miniature UAVs reviewed in the appendix 111
3.4 Typical action flow for a C4ISR mission 112
3.5 Rotation axes for a typical fixed-wing aircraft 123
3.6 Control surfaces for a typical fixed-wing aircraft 124
3.7 Three types of wings commonly used for the design of MAVs 125
3.8 Example of a multi-channel transmitter for RC aircraft 130
3.9 An Artificial Horizon (AH) device . 132
3.10 Functional structure of an autopilot system 134
3.11 A typical flight control system for MAVs 136

4.1 Block diagram describing the control system implemented by How et
al. 143

4.2 Possible levels of decisional autonomy for MAVs involved in cooper-
ative tasks . 145

4.3 Motion constraints for a fixed-wing aircraft 152

11

5.1 Screenshot of the 2D simulator in a scenario which includes obstacles 177

5.2 Screenshots of the three tabs included in the QtTabWidget element
of the application main window . 179

5.3 Example topology for a typical NN controller 185

5.4 Discrete encodings of the MAV-target angle 189

5.5 Simulation A2: average and best fitness 193

5.6 Simulation A2: percentage of successful tests 194

5.7 Simulation A2: average and minimum distance 195

5.8 Simulation A2: amount of energy left 196

5.9 Simulation A2: condition of the MAVs at the end of the “average test”197

5.10 Simulations A: comparison for the average fitness 198

5.11 Simulations A: comparison for the best fitness 199

5.12 Simulations A: comparison for the success rate 199

5.13 Overview of the obstacles distributed along the environment 201

5.14 The four different configurations of ultra-sonic sensors tested 203

5.15 Graphical representation of the NN controller used in simulations B2,
B3, and B4 . 205

5.16 Simulations B: comparison for the average fitness 207

5.17 Simulations B: comparison for the best fitness 208

5.18 Simulations B: comparison for the success rate 208

5.19 Simulation B4: condition of the MAVs at the end of the “average test”210

5.20 The 2D simulated environment used by Zetule 211

5.21 Zetule’s experiment: average and best fitness 211

5.22 The options available to the target for escaping the approaching MAV 213

5.23 Simulations C: comparison for the average fitness 215

5.24 Simulations C: comparison for the best fitness 215

5.25 Simulations C: comparison for the success rate 216

5.26 Simulations B and C: comparison for the average and best fitness . . 218

5.27 Simulations B and C: comparison for the success rate 218

5.28 Graphical representation of the NN controller used in Simulations D . 220

5.29 Simulation D1: flight paths followed by a team of MAVs cooperatively
approaching the target . 223

5.30 Simulation D1: average and best fitness 224

5.31 Simulation D1: percentage of tests concluded either successfully, with
the approaching, or with the damaging of the target 225

5.32 Simulation D1: condition of the MAVs at the end of the “average test”226

5.33 Simulation D2: average and best fitness 227

5.34 Simulation D2: percentage of tests concluded either successfully, with
the approaching, or with the damaging of the target 227

5.35 Simulation D2: condition of the MAVs at the end of the “average test”228

6.1 Screenshot of the 3D simulator . 240

6.2 The simulation reference environment 242

6.3 Some of the most representative NN topologies tested 254

6.4 Simulation A5: flight paths followed by four individual MAVs sharing
the same evolved controller . 256

6.5 Simulation A5: average and best fitness 257

6.6 Simulation A5: percentage of successful tests 257

6.7 Simulation A5: amount of energy left 258

6.8 Bar plot displaying the maximum success rate obtained by the best
individuals evolved with the various controller architectures deprived
of memory components . 259

6.9 Simulations A: comparison for the average success rate in function of
the sets of rotations available to the aircraft 260

6.10 Simulations A: comparison for the maximum success rate in function
of the sets of rotations available to the aircraft 260

6.11 Simulations A: comparison for the average success rate in function of
the kind of encoding used for the input information 261

6.12 Simulations A: comparison for the maximum success rate in function
of the type of encoding used for the input information 261

6.13 Simulations A: comparison for the average success rate in function of
the presence/absence of a hidden layer 262

6.14 Simulations A: comparison for the maximum success rate in function
of the presence/absence of a hidden layer 263

6.15 Comparison between single and multi-threading in terms of execution
speed on the Apple Mac Pro machine 265

6.16 Comparison between single and multi-threading in terms of execution
speed on the Apple Xserve machine 265

6.17 Simulation B5: comparison for the success rate 269

6.18 Simulation B11: comparison for the success rate 269

6.19 Graphical representation of the NN controllers (a) C5; (b) C11 272

6.20 Simulation C2: flight paths followed by three individual MAVs shar-
ing the same controller . 274

6.21 Simulation C5: flight paths followed by four individual MAVs sharing
the same controller . 275

6.22 Simulation C5: percentage of successful and half-successful tests for
the average and the best MAVs . 276

7.1 senseFly’s swinglet MAV . 291

7.2 (a) the dsPic33 micro-controller upon which the autopilot has been
built; (b) overall view of all the equipment hosted inside the payload
bay . 292

7.3 Screenshot of the e-mo-tion main interface 293

7.4 Screenshot of the flocking software simulator 295

7.5 The simulation reference environment 295

7.6 Different initial MAV teams formations 297

7.7 Flight path followed by a single MAV taking off from the ground . . . 299

7.8 Flight paths followed by a team of four MAVs attracted to the centre
of the reference environment (2D view) 300

7.9 The three flocking rules elaborated by Reynolds 306

7.10 Satellite image of the test field . 311

7.11 ECEF reference frame . 312

7.12 Rendezvous behaviour: flight paths followed in simulation by two MAVs316

7.13 Rendezvous behaviour: distance in simulation between the leader and
the follower . 317

7.14 Rendezvous behaviour: standard deviation in simulation for the MAVs’
heading . 318

7.15 Rendezvous behaviour: flight paths followed in reality by four MAVs 320

7.16 Flocking behaviour: flight paths followed in simulation by a flock of
four MAVs . 322

7.17 Flocking behaviour: area covered in simulation by a flock of four MAVs323
7.18 Flocking behaviour: average and minimum distance in simulation

between members of the flock . 324
7.19 Flocking behaviour: standard deviation in simulation for the MAVs’

heading . 325
7.20 Inter-robot communication probability in function of the distance be-

tween the robots . 326
7.21 Flocking behaviour: flight paths followed in reality by a flock of nine

MAVs . 327
7.22 Graphical representations of the impact of communication range and

turn rate on heading standard deviation and intra-flock distance . . . 328

A.1 (a) AV Hornet; (b) AV Wasp Block I; (c) AV Wasp Block II; (d) AV
Wasp Block III / BATMAV . III

A.2 (a) AV Dragon Eye; (b) AV Raven RQ-11A IV
A.3 (a) AV Pointer FQM-151A; (b) AV Puma AE (All Environment) . . . VI
A.4 (a) AV Switchblade; (b) AV Nano Hummingbird; (c) AV HawkEye . . VII
A.5 Lockheed Martin Desert Hawk MAV VIII
A.6 AAI Orbiter Mini UAS . X
A.7 One System Ground Control Station (OSGCS) X
A.8 (a) AAI-Aerosonde Mark 4.7; (b) details of the combined launch/re-

covery system used by the Mark 4.7 XI
A.9 IAI Mosquito Micro-UAV . XII
A.10 IAI Mini UAS BirdEye 650 . XII
A.11 IAI Mini Panther . XIII
A.12 (a) Insitu ScanEagle; (b) the SkyHook device used for the recovery . XIV
A.13 Insitu NightEagle . XV
A.14 Elbit Systems Skylark I-LE . XVI
A.15 (a) AerialRobotics EasyUAV (modified EasyStar); (b) AerialRobotics

Pteryx . XVII
A.16 Airborne platform . XVIII
A.17 One of the research platforms developed by Wu and colleagues XIX
A.18 (a) Parrot AR.Drone; (b) screenshot of the AR.FlyingAce application XX

B.1 (a) Crossbow SPB400 Stargate Gateway; (b) Crossbow MNAV 100CA
Inertial Measurement Unit . XXIV

B.2 Procerus Kestrel Autopilot System XXV
B.3 Procerus Unicorn MAV . XXVI
B.4 MicroPilot MP2028g . XXVII
B.5 (a) Cloud Cap Piccolo SL; (b) Cloud Cap Piccolo II XXVIII
B.6 (a) UNAV 3550 sUAS autopilot; (b) UNAV PICOPILOT-N XXX
B.7 Two FlexiPilot autopilot systems stacked on top of each other XXXI

List of Tables

2.1 Activation/truth table for a two-input TLU implementing a logic AND 62

2.2 Truth table for the XOR function . 63

2.3 The subfields of Evolutionary Computation and the corresponding
level in the evolution hierarchy they model 72

3.1 USAF UAVs tier classification system 102

3.2 USMC UAVs tier classification system 103

5.1 Discretised encoding of the MAV-target distance 189

5.2 Summary of the main characteristics of simulations A 191

5.3 Simulations A: initial deployment of MAVs and target 191

5.4 Simulations A: resume of the main results 200

5.5 Simulations B: (X, Y) coordinates of the obstacles present in the sim-
ulated environment . 202

5.6 Simulations B: (X, Y) coordinates of the enclosed area 202

5.7 Simulations B: values returned by the simulated ultra-sonic sensors . 204

5.8 Simulations B: initial deployment of MAVs and target 206

5.9 Simulations B: resume of the main results 206

5.10 Simulations B: condition of the MAVs at the end of the “average test”209

5.11 Simulations C: resume of the main results 214

5.12 Simulations D: condition of the MAVs at the end of the “average test”228

5.13 Simulations D: resume of the main results 229

5.14 Comparison between simulations D1 and E 231

6.1 Structure of the text file in which the flight paths followed by the
MAVs during a test are memorised 240

6.2 3D simulations: initial deployment of MAVs and target 243

6.3 Discretised encoding of the MAV-target horizontal angle 246

6.4 Discretised encoding of the MAV-target vertical angle 247

6.5 Discretised encoding of the MAV bank angle 248

6.6 Discretised encoding of the MAV-target distance 249

6.7 Neural network controller architectures tested 253

6.8 Simulations A: resume of the main results 255

6.9 Simulation A9: comparison between single and multi-threading in
terms of execution times . 264

6.10 Simulations B: possible movement destinations for the target 267

6.11 Simulation B5: resume of the main results 270

6.12 Simulation B11: resume of the main results 270

6.13 Simulations C: resume of the main results 274

6.14 Simulations A: resume of the new main results 277

15

6.15 Simulations B (non-incremental setup, Ts =
Ms

2
): resume of the new

main results . 277

6.16 Simulations B (non-incremental setup, Ts =
Ms

3
): resume of the new

main results . 278
6.17 Simulations C (non-incremental setup): resume of the new main results279

6.18 Simulations B (incremental setup from A to B, Ts =
Ms

2
): resume of

the main results . 280

6.19 Simulations B (incremental setup from A to B, Ts =
Ms

3
): resume of

the main results . 281
6.20 Simulations C (incremental setup from A to C): resume of the main

results . 282
6.21 Comparison between incremental (A to B) and non-incremental (B)

evolution (Ts =
Ms

2
) . 283

6.22 Comparison between incremental (A to B) and non-incremental (B)

evolution (Ts =
Ms

3
) . 284

6.23 Comparison between incremental (A to C) and non-incremental (C)
evolution . 284

7.1 Coordinates of the waypoints used in experiments with real robots . . 318
7.2 Structure of the data messages broadcasted by the leader MAV . . . 319

A.1 Classification of the miniature UAVs reviewed in the appendix XXI

List of Algorithms

1 Error backpropagation algorithm for a network consisting of a single
hidden layer . 66

2 Basic functioning of a GA . 82
3 Flocking simulator: V-formation MAVs deployment (3D) 298
4 Flocking simulator: random MAVs deployment (3D) 298
5 Flocking simulator: speed adjustment for the i -th non-leader MAV . 303
6 Flocking simulator: heading alignment for the i -th MAV 304
7 Parker’s pseudocode for flocking: cohesion rule for boid i 308
8 Parker’s pseudocode for flocking: separation rule for boid i 308
9 Parker’s pseudocode for flocking: assembling the rules together 309
10 Parker’s-inspired pseudocode for flocking: assembling the rules to-

gether for boid i . 309
11 Flocking simulator: speed adjustment for rendezvous behaviour (i-th

follower) . 314
12 Flocking simulator: navigation and flocking algorithm for boid i . . . 321

Acknowledgements

First of all, I would like to express my gratitude to my supervisor, Prof. Angelo
Cangelosi, for the scientific and human support he provided me since I started my
Ph.D. programme. His career is taking off, and I am confident that one day I will
be proudly able to say, ”I was there”.

Then several other dedications are necessary.

To Prof. Dimitar Kazakov for the extremely detailed feedback he has given me
about this thesis, that contributed enormously to make it a better piece of work.

To Dr. Leonid Perlovsky and the European Office of Aerospace Research and
Development for the support provided at various level.

To Prof. Roberto Serra, and Prof. Domenico Parisi, who ignited the fire of
science in me.

To Dr. Davide Marocco and Dr. Tony Morse, for the countless insightful philo-
sophical discussions we have had together.

To Dr. Ghassan Abdalla, Dr. Paul Baxter, Prof. Tony Belpaeme, Dr. Guido
Bugmann, Dr. Eduardo Coutinho, Dr. Phil Culverhouse, Joachim De Greeff, Fred-
eric Delaunay, Prof. Jose’ Fernando Fontanari, Christopher Ford, Dr. Peter Gib-
bons, Chris Larcombe, Magdalena Leschtanska, Dr. Zoran Macura, Martin Peniak,
Salomon Ramirez-Contla, Robin Read, Marek Rucinski, Francesca Stramandinoli,
Dr. Liz Stuart, Dr. Vadim Tikhanoff, Dr. Fan Wo, Dr. Joerg Wolf, and Dr. Rachel
Wood. Working with you has simply been a great experience.

To Prof. Dario Floreano, Dr. Sabine Hauert, Dr. Severin Leven, and Dr. Jean-
Cristophe Zufferey, who made my stay at the EPFL in Lausanne a very enriching
experience, both from a professional and a human point of view.

To Lucy Cheetham, Elena Dell’Aquila, Sue Kendall, Julie Taylor, and Carole
Watson for the help and support provided at various stages during my Ph.D. course.

To Simon Oliver, who was my competitor when I applied for the Ph.D. stu-
dentship that had in turn led to this work. Despite the fact that this event could
have turned into a potential source of friction he never took it personally. Rather,
in the following years he has always been the first to advise me about interesting
papers to read, potential new research directions to undertake, and so on. An evil
disease brought him away too soon, but may his example remain with me forever.

To Edward Baczynski, Paul Baxter, Barry Bentley, and Christopher Boyd-
Swann, who proofread various parts of my thesis and provided me with rich insights
about its contents. In wishing them the best of luck for their future careers, I must
stress how any mistake should have remained in this work must be considered my
fault only.

To the iCub robot and to all the people loudly whining and complaining while
struggling to make it work, who kept reminding me how lovely it is working with
computer simulations rather than real robots. To the Swinglet MAV platform I
carried out experiments with, which reinforced in me that feeling.

To all of those who do not want to believe poker is a game based on skill rather
than on mere luck. Your belief has allowed me to keep a well above average lifestyle
over the last few years, as well as avoid the typical “Ph.D. student lack-of-money
induced depression syndrome”. Thank you.

To my family. Close or far it might be, it never lets me down.

To all the persons who have had to deal with my swinging mood during the
writing of this thesis. I swear that hundreds of hours spent analysing data, writing,
deleting, and re-writing chapters could even impact on Dalai Lama’s mindset.

To x (whichever your name will be). You are not born yet and you are already
one the most important things in my life. That’s a good start, isn’t it?

Update: you are born. And now you have a lovely name too: Samuel John. And
yes, you have made this wait worthwhile!

Author’s declaration

At no time during the registration for the degree of Doctor of Philosophy has
the author been registered to any other University award without prior agreement
of the Graduate Committee.

This work has been carried out by Fabio Ruini, during his Ph.D. course in
evolutionary robotics and distributed control for MAVs, under the supervision of
Professor Angelo Cangelosi.

The research described in this thesis has been supported by the Air Force Office
of Scientific Research, Air Force Office Material Command, USAF, through the Eu-
ropean Office of Aerospace Research & Development (EOARD), under grant number
FA8655-07-1-3075. Support has also been provided by euCognition (network action
097-3) and by the University of Plymouth.

Publications

Hauert, S., Leven, S., Varga, M., Ruini, F., Cangelosi, A., Zufferey, J.-C.,
and Floreano, D. (2011), Reynolds Flocking in Reality with Fixed-Wing Robots:
Communication Range vs. Flight Dynamics. In Proceedings of IROS 2011, the
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5015-
5020.

Ruini, F., and Cangelosi, A. (2010), An Incremental Approach to the Evolu-
tionary Design of Autonomous Controllers for Micro-unmanned Aerial Vehicles. In
Proceedings of TAROS 2010, the 11th Conference Towards Autonomous Robotic
Systems, pp. 239-246.

Ruini, F., and Cangelosi, A. (2010), An Evolutionary Robotics 3D Model for
Autonomous MAVs Navigation, Target Tracking and Group Coordination. In Pro-
ceedings of IJCNN 2010, the International Joint Conference on Neural Networks,
pp. 760-767.

Ruini, F., and Cangelosi, A. (2010), Intelligent Autonomous Controllers based
on Genetically Evolved Neural Networks for Flying Robots: Experiments in Two
and Three Dimensions (abstract). In Proceedings of PCCAT 2010, the Postgraduate
Conference for Computing: Applications and Theory.

Ruini, F., and Cangelosi, A. (2009), Extending the Evolutionary Robotics ap-
proach to Flying Machines: an Application to MAV Teams. Neural Networks (Ad-
vances in Neural Networks Research: IJCNN 2009), 22, 812-821.

Ruini, F., Cangelosi, A., and Zetule, F. (2009), Individual and Cooperative Tasks
performed by MAV Teams driven by Embodied Neural Network Controllers. In Pro-
ceedings of IJCNN 2009, the International Joint Conference on Neural Networks,
pp. 2717-2724.

Ruini, F., and Cangelosi, A. (2009), Un Modello 3D di Robotica Evolutiva per
lo Sviluppo di Controller Autonomi per Robot Volanti. In Miglino, O., Ponticorvo,
M., Rega, A., and Rubinacci, F. (eds.), Modelli, Sistemi ed Applicazioni di Vita
Artificiale e Computazione Evolutiva. Atti del VI Workshop Italiano di Vita Artifi-
ciale e Computazione Evolutiva (WIVACE 2009), pp. 177-185.

Ruini, F., and Cangelosi, A. (2008), Distributed Control in Multi-Agent Systems:
a Preliminary Model of Autonomous MAV Swarms. In Proceedings of FUSION 2008,
the Eleventh International Conference on Information Fusion, pp. 1043-1050.

Ruini, F., and Cangelosi, A. (2008), Evolutionary Algorithm based Neural Net-
work Controllers: an Application to MAV Swarms (abstract). In Proceedings of
WIVACE 2008, the V Italian Workshop on Artificial Life and Evolutionary Com-
putation.

Word count for the main body of this thesis: 75,975

Signed:

Date:

Chapter 1

Introduction

In this thesis we introduce two new approaches to the design of distributed au-

tonomous controllers for the collective behaviour of teams of unmanned aerial vehi-

cles.

The previous sentence highlights the main keywords of this work. We look at

autonomous intelligent control with a focus on distributed control and collective

behaviour, while always having fixed-wing Micro-unmanned Aerial Vehicles (MAVs)

as a reference.

Autonomous intelligent control is the discipline which is focused on the design

of automatic systems able to make a robotic vehicle perform a certain complex task

without the need for a human expert to be part of the control loop. The robot

gathers information about the environment in which it has to perform using its

embedded sensory apparatus or receives this information from an external element

capable of data collection and transmission. The available information is then in-

terpreted by the robot and a proper behavioural response, in accordance to the task

given, is generated and executed.

Distributed control is a notably interesting problem from a scientific perspective

and has therefore been the subject of countless numbers of publications. The idea

behind distributed control consists in governing the behaviour of a team of robots

(i.e. collective behaviour) by sharing the tasks of information gathering and of its

following processing amongst all the members of the group. The main advantages

provided by this approach can be identified in the non-critical reliance of the system

23

upon any central element, with the obvious consequences in terms of reliability

(fault-tolerance) and flexibility in front of variations in group sizes.

Aerial vehicles differ in many ways from ground-based wheeled robots. This

difference is more pronounced for fixed-wing aircraft due to their very characteris-

tic motion constraints. The most common robots used for experiments in collective

robotics are either omni-directional in their motion (as the Khepera and e-puck plat-

forms, widely employed in Evolutionary Robotics), or they can modify their speed

to significant extents going as far as being able to stop, change heading direction

and then start moving again (this is true for both ground-based wheeled robots and

aerial vehicles capable of hovering, such as helicopters). The motion constraints of

fixed-wing aircraft makes the control task significantly more challenging. For exam-

ple, not being able to stop in mid-air (this would cause a stall), fixed-wing aircraft

require every movement to be carefully planned in advance taking into account the

potential consequences of any single action.

The first of the two approaches proposed herein to implement a distributed con-

trol system capable of dealing with the aforementioned constraints is a hybrid one,

based upon Evolutionary Robotics and Multi-Agent Systems methodologies. What

we aim to demonstrate is how, in the light of the latest technological innovations,

Evolutionary Robotics can be considered as a valid candidate methodology for the

design of distributed autonomous controllers for groups of Micro-unmanned Aerial

Vehicles. The technological innovations we are referring to can be identified in: the

availability of affordable, robust and easily operated MAV platforms, the widespread

introduction of miniature sensors and electro-mechanical components to activate the

control surfaces of the aircraft, and the accuracy in flight stabilisation provided by

most of the autopilot systems available on the market. Such autopilots can be easily

integrated into the fuselage of a small aerial vehicle and connected to an onboard

computer which, in addition to having access to the readings coming from all the

sensors installed on the aircraft, can also issue orders (flight instructions) to it to

be executed. The peculiarity of the proposed approach is its reliance on simplistic

non-physics based computer simulators that approximate from a very high level the

24

flight dynamics of MAV platforms. The use of simpler simulators makes it possible

to use the Evolutionary Robotics paradigm for tackling problems significantly more

complex than simple flight planning, with the evolutionary process taking place in

a reasonable time-frame. The author’s belief is that the autopilot systems available

nowadays make it possible, as long as the software simulators used for the evolution

of the controllers implement “plausible” flight motion dynamics, to overcome the

“reality gap” issue, i.e. the mistakes made by a controller designed in simulation

when facing the complexity of the real world.

The second proposed approach is based instead upon the principles of “flock-

ing” as originally introduced by Craig Reynolds. This part of the study will not

receive the same amount of attention dedicated to the exploration of the Evolution-

ary Robotics based methodology. Originally, this thesis was thought in fact to be

exclusively oriented towards ER. Then, thanks to a collaboration with the Labora-

tory of Intelligent Systems at the EPFL in Lausanne, the author has had the chance

to carry out some experiments on physical robots. Unfortunately it was not possi-

ble to replicate the scenarios elaborated in simulation, due to several reasons. For

example, no obstacle-avoidance behaviours could have been implemented on phys-

ical robots because of the impossibility of carrying out experiments within urban

areas (or to deploy obstacles about 100m tall in the test field used), and because

of the lack of sensors with specifications matching those of the ultra-sonic sensors

simulated in the computer models. Deploying a target to be followed by the aircraft

was a non-trivial task as well. The decision upon the research direction to pursue

has therefore been made in agreement with the scientific interest of the colleagues

working at EPFL. What we decided to do was to implement a flocking algorithm

(i.e. a distributed control system) on computer simulation (to test how the original

Reynolds’ algorithm could be adapted to the motion constraints of fixed-wing air-

craft) and then on real robots. The significance of the experiments carried out goes

far beyond obtaining flocking behaviour in reality. As the hand-designed controllers

run on the aircraft only produce a single output value, this condition matches ex-

actly the scenario we have simulated in the first of the two Evolutionary Robotics

25

computer models developed. Considering that the simulator used for testing the

flocking behaviour has been built on the same design principles as the two models

employed for the ER experimentations, we obtained indirect confirmation of how

the evolved controllers could be successfully applied to real robots.

1.1 Contribution to knowledge

This thesis contributes to knowledge in several ways. A short summary, which the

reader can use as an additional taster of the contents that will follow, is provided

herein:

• extension of the Evolutionary Robotics approach to the domain of collective

aerial robotics : the main contribution of this thesis consists in demonstrating

how the Evolutionary Robotics design principles can be successfully applied to

the domain of collective aerial robotics. This is a case in which a relatively well-

known methodology (Evolutionary Robotics principles) has been employed

on a different subject than usual, not properly investigated by the available

scientific literature.

The demonstration has been done in an indirect way. Most of the work has

been carried out using computer simulations, where autonomous neural net-

work controllers were evolved to deal with different experimental scenarios.

At a later stage only tests have been conducted on real robotics platforms.

Although, most of the experimental setups studied in simulation could have

not been reproduced in the real world due to several constraints (e.g. impos-

sibility to carry out experiments within urban environments due to safety rea-

sons, impracticability in recreating obstacles 50m tall, etc.). Thus, once the

simulations had demonstrated that autonomous controllers could have been

successfully designed relying on Evolutionary Robotics design methodologies,

knowing that real robotics platforms (thanks to modern autopilot systems)

could be governed using the same set of output values generated by the neural

networks controllers evolved in simulation has been interpreted as a demon-

26

stration of the feasibility of the chosen approach.

The research focus has been oriented towards fixed-wing aircraft as these aerial

platforms are considered by the author the most challenging ones (compared

for example with helicopters and multi-rotor aerial vehicles) from a control

point of view. The main associated motion constraints typical of fixed-wing

aircraft have been taken into account, as well as the issues associated with

distributed control. Having focused the research on fixed-wing aircraft, the

findings identified should smoothly apply to simpler aerial platforms too.

The prospect of employing Evolutionary Robotics techniques in the aerial

robotics domain makes it possible to benefit of all the typical advantages pro-

vided by this approach (maximum exploitation of the reference environment,

identification of non-obvious solutions, easy implementation of sophisticated

control algorithms, etc.), thus extending in a considerable way the array of

potential applications of autonomous fixed-wing aircraft.

Most of the scientific publications derived by the work the author carried out

during his Ph.D. programme discuss the advantages associated to the cho-

sen approach. Amongst them notable mentions go to: “Distributed Control in

Multi-Agent Systems: A Preliminary Model of Autonomous MAV Swarms” [319]

presented at FUSION 2008 (International Conference on Information Fusion);

“Evolutionary Algorithm based Neural Network Controllers: an Application to

MAV Swarms” [320] presented at WIVACE 2008 (Italian Workshop on Artifi-

cial Life and Computational Evolution); “Extending the Evolutionary Robotics

Approach to Flying Machines: An Application to MAV Teams” [321], appeared

in 2009 on the Neural Network journal;

• software simulators and reality gap: the investigations carried out demonstrate

that using complex, realistic, and computationally heavy physics-based soft-

ware simulators is not a compulsory requirement for the design of autonomous

controllers to be eventually transferred onboard real fixed-wing aerial robots.

As components such as autopilot systems that can take care of the low-level

control issues (as well as executing instructions provided by several means) ex-

27

ist, the task of designing autonomous controllers for high-level behaviours be-

comes significantly easier. Software simulators implementing “realistic” flight

dynamics, although not necessarily 100% accurate from a physics viewpoint,

can be successfully employed for this purpose. This opens the door for a wide

range of computational intelligence methods previously thought to be exces-

sively time-consuming (as for example artificial evolution), to be applied to

the domain of aerial robotics.

Other than in most of the publications cited above, this point has also been dis-

cussed in “Intelligent Autonomous Controllers Based on Genetically Evolved

Neural Networks for Flying Robots: Experiments in Two and Three Dimen-

sions” [325], presented at PCCAT 2010 (Postgraduate Conference for Com-

puting: Application and Theory);

• flocking behaviour on real aircraft : as far as the author is aware, the experi-

ments carried out in collaboration with the Laboratory of Intelligent Systems

of the EPFL have been the first in which Reynolds’ flocking algorithm was

adapted and tested on real fixed-wing aerial robots. As this algorithm is fairly

simple to implement and light from a computational point of view, an aver-

age onboard computer can employ it and still be left with enough available

resources to run other tasks in parallel with navigation. This is an extremely

interesting point, with a potentially significant impact on the field of dis-

tributed control, as the designer of such systems can rely on this algorithm as

a solid base for navigation, thus concentrating instead on the more important

tasks.

The joint work in which Reynolds’ flocking applied to fixed-wing aircraft has

been investigated has resulted in the publication of a paper titled “Reynolds

flocking in Reality with Fixed-Wing Robots: Communication Range vs. Flight

Dynamics” [157], presented at IROS 2011 (International Conference on Intel-

ligent Robots and Systems);

28

• investigations on input encoding, genetic operators and incremental evolution:

although not providing conclusive results, the investigations carried out along

with the various experiments add more elements to the technical discussion

about methodologies both in Evolutionary Robotics and the broader evolu-

tionary computation fields.

The results obtained on incremental evolution are the main topic of a paper

presented at TAROS 2010, titled “An Incremental Approach to the Evolu-

tionary Design of Autonomous Controllers for Micro-unmanned Aerial Vehi-

cles” [324];

• availability of the software simulator : the software simulators developed by

the author during his Ph.D. research all rely on open-source libraries and

have been made freely available on the Internet. Since an extremely careful

modelling of the specific aerial platform used as reference is not required, the

very same simulators can easily be modified and employed by any researcher

willing to carry out investigations in the area of intelligent control for aerial

robots.

Careful descriptions of the software simulators have been published. For what

concerns the 2D model the reference publication is “Individual and Coopera-

tive Tasks Performed by Autonomous MAV Teams Driven by Embodied Neu-

ral Network Controllers” [326], presented at IJCNN 2009 (International Joint

Conference on Neural Networks). The 3D simulator has been described in

detail in “An Evolutionary Robotics 3D Model for Autonomous MAVs Navi-

gation, Target Tracking and Group Coordination” [323], presented at IJCNN

2010.

1.2 Thesis outline

The thesis is structured as follows:

• Chapter 2 introduces the field of Evolutionary Robotics, contextualising it

along an historical perspective that started with “Shakey the robot” and

29

the classic approach to autonomous robotics which was revolutionised by

Rodney Brooks’ Behaviour-Based Robotics, and eventually ended up in the

evolutionary-based approach we adhere to. Two main sections are dedicated

to Neural Networks and Evolutionary Algorithms respectively, as they are

the two main instruments upon which Evolutionary Robotics is based. For

what concerns neural networks, a simple mathematical treatment of its core

components is provided;

• Chapter 3 concludes the introductory part of this thesis by presenting the field

of aerial robotics. The historical development of the field is outlined as well

and the most commonly applied scenarios in which UAVs and MAVs can be

employed are described. The chapter goes on to illustrate the main design

issues involved in the development of miniature aerial platforms, as well as

the basic aerodynamics and the most compelling motion constraints related

to fixed-wing aircraft. Finally, the topics of remote and autonomous control

are introduced;

• Chapter 4 links the two introductory chapters with the following ones related

to the experimental part of this thesis. This chapter provides a scientific lit-

erature review focused on the publications dealing with the issue of designing

intelligent controllers for aerial robots. The author then describes the charac-

teristics of the two alternative approaches he has proposed (introducing at the

same time the concept of Reynolds’ flocking), examines the main challenges

involved and introduces the plan for the simulation experiments described in

the following three chapters;

• Chapter 5 presents the first of the three computer simulators developed for

the purposes of this thesis. The one analysed here is a 2D simulator that

approximates from a high-level perspective the flight behaviour of real aircraft.

Nevertheless, it incorporates what we believe is the most relevant trait of fixed-

wing aerial robots, i.e. the constraint of continuous motion associated to a

limited turn rate. Several experimental setups have been elaborated and their

30

results presented throughout the chapter, including: navigation through an

obstacle free environment, obstacle avoidance behaviour within an urban-like

environment, tracking of targets moving at different speeds and cooperative

behaviour based on implicit communication strategies;

• Chapter 6 introduces a new three-dimensional simulator which, although being

developed on the basis of completely different software instruments, is closely

related to the 2D one presented in the previous chapter. The 3D simulator

has been designed to replicate, with a different level of approximation in the

flight dynamics, the results obtained previously (with only the exception of

obstacle avoidance). Side by side with the experiments on navigation, addi-

tional aspects are analysed. We refer in particular to passing from a single

to a multi-thread computer simulator and to the adoption of the incremental

evolution paradigm;

• Chapter 7 concerns flocking behaviour and the issues arising when moving

from computer simulations to experimentations on real flying robots. This is

the second of the two approaches proposed in this thesis. Despite not rely-

ing on Evolutionary Robotics, this part of the research has also required the

development of a software simulator in order to test the various variations of

the flocking algorithm proposed. The characteristics of the simulator are de-

scribed in detail, as well as the results obtained in it and when the controllers

have been transferred to real robots;

• in the Conclusions section we look back at the various topics touched upon

this thesis, attempting to objectively evaluate the results obtained. Plans

for future work, both in terms of possible improvements and completely new

research directions, are also described;

• the Appendix is structured into four sections. It starts by presenting two de-

tailed reviews respectively focusing (1) on the most prominent MAV platforms

developed for military, scientific and entertainment purposes, and (2) on the

most complete autopilot systems for aerial robots commonly available on the

31

market. One specific section describes the functioning of P-ARTS (Plymouth

Advanced Robot Training Suite), the computer grid facility used for carrying

out the most computation intensive of the simulation experiments presented

in this work. The remaining part contains some of the mathematical/trigono-

metrical formulas used across the pages of this thesis that are often referred

to.

Chapter 2

Evolutionary Robotics: Neural

Networks and Evolutionary

Computation Working Together

This chapter lays the foundations for the methods that will be used in the rest of

this thesis. Since the work presented herein deals with Evolutionary Robotics, we

will provide a detailed overview of the Evolutionary Robotics field. This will include

a short historical background, exploring both the domain in itself, and the two main

subfields that constitute it: Neural Networks and Evolutionary Computation. A

short section has been dedicated to control theory in order to put the Evolutionary

Robotics approach in the proper context.

2.1 Towards Evolutionary Robotics (ER)

Evolutionary Robotics (ER) [112, 113, 141, 280] is a methodology for the automated

design of control systems (“controllers”) for autonomous robots. The field of ER can

be introduced by defining some of the keywords mentioned in the previous sentence:

control systems, autonomous, robots.

33

2.1.1 Autonomous robotics

The roots of the word “robot” originate from the Old Church Slavonic term “rab-

ota1”, a word which can be effectively translated as both “servitude”, and “work”.

These two possible translations reflect quite accurately the aim of those who first se-

riously started to work on building robots. Aim which consisted in creating “slaves”

capable of carrying out physical hard work in place of their human “masters”. Even

modern dictionaries provide us with definitions oriented towards the professional role

played by robots, stating for example that they are “machines capable of carrying

out complex series of actions automatically2”.

Given the above considerations it is hardly surprising that the most common

examples of robots we can see nowadays are the industrial robots used across fac-

tories all over the world. Industrial robots are typically “blind” with respect to the

environment in which they operate, i.e. they only have scarce interactions with it

and they are generally programmed to perform the same job at all times. They

do not have the chance to decide, autonomously, how to behave in relation to the

requirements of the environment, thus accurately reflecting the lexical meaning of

the word “rabota”.

In this thesis we are looking at different kind of robots. We refer to robots that

can interact in more flexible ways with the surrounding environment (whether it is a

merely physical environment, or one involving interactions with living entities) and

that can exhibit several behaviours, i.e. be considered “multi-purpose”. We also

refer to robots that can often move across the reference environment and that are

more flexible, in the sense they can take decisions about how to reach a certain goal.

All of these characteristics, especially self-determination, are characteristics we look

at when we talk about “autonomous intelligent robots”.

The above definitions do not mean that an autonomous robot must necessarily

be able to achieve different goals (multi-goal controllers are still an active area of

research, often associated to high-level psychological concepts as motivations and

emotions [209, 327]). What we stress here is that an autonomous robot has at

1http://www.etymonline.com/index.php?search=robot
2http://www.oxforddictionaries.com/definition/robot?view=uk

34

least some degrees of flexibility in deciding how to behave at any given time. This

flexibility is granted by the robot’s controller. Throughout this thesis we will define

as “controller” (or “control system”) the software that controls the behaviour of a

robot, making it possible for it to achieve a certain goal. A more specific definition

comes from the control theory field [18], according to which a controller is:

“[...] a device which monitors and affects the operational conditions of a
given dynamical system. The operational conditions are typically referred
to as output variables of the system which can be affected by adjusting
certain input variables.”

Interesting additional considerations on the concept of autonomous controllers

can be found in the seminal work by Patcher and Chandler [290], while the topic of

“intelligent control” can be investigated by looking at the research done by Antsaklis

and colleagues [14, 15]. Section 2.2 will provide the reader with a quick introduction

to the domain of control theory.

The controller is the crucial part of any robotics application. Designing intelli-

gent controllers for autonomous robots is, in essence, what this thesis is all about.

2.1.2 The classical approach to autonomous robotics: Shakey

the robot and the problem of planning

The earliest methodologies employed to design controllers for autonomous robots,

developed during the 70s of last century, will be defined in the rest of this chapter

as the “classical approach” to robotics.

The classical approach builds upon a cognitivist interpretation of intelligence, ac-

cording to which there is a clear separation between the body, intended as a physical

entity, and the mind, something which has the ability of processing information. Ac-

cording to this school of thought, an autonomous intelligent system is constituted

by three independent sub-systems: a perceptual system, a planner, and a motor

system. The perceptual system extracts useful information from the external envi-

ronment through sensory readings generated by a set of sensors. The planner, based

on the current situation, has the task of planning a sequence of actions allowing the

35

robot to achieve its goal. Finally, the motor system must translate the sequence

programmed by the planner into a set of motor actions that implement the desired

behaviour.

Shakey the robot [278] - developed at Stanford as a practical demonstration of the

applicability of the problem solver STRIPS (Stanford Research Institute Problem

Solver) [108] to the domain of autonomous robotics - is arguably the best example

of the classical approach to autonomous robotics.

Figure 2.1: Shakey the robot. Source: http://www.ai.sri.com/shakey/

Shakey was a mobile robot with the task of executing simple actions inside a

house-like building, i.e. a structure composed of one corridor and a series of rooms

containing certain sets of objects. The typical action Shakey was required to do was

to look for an object in a specific room and take it to a different room.

In order to find the solutions to the different problems it was asked to tackle,

Shakey had to define a planning algorithm for each of them. A planning algorithm

essentially consists of a sequence of actions that the robot has to perform in order to

achieve the desired goal, i.e. it represents a solution for the current problem. Such

a solution must satisfy several criteria, as for example: effectiveness (the solution

must lead to the solving of the task), completeness (any precondition implied by

36

the various actions must be verified before proceeding through the sequence), and

consistency (the solution can not contain contradictory actions).

The technique employed for Shakey - which involves the use of a high-level plan-

ner fed with sensory information and controlling a motor system - can be defined as

“planning”. One important characteristic of this approach lies in the independence

of the three components of the control system. Since the planner does not have

direct access to the external environment in which the robot operates, it must rely

on descriptions of the surrounding world elaborated by the sensory (perceptual) sys-

tem. Output motor actions are separated from the planner as well, and are executed

sequentially once the solution identified by the planner has been properly translated

into simple motor directives.

As discussed in more details by Beer [32], the independence of the different lay-

ers constituting the entire control system leads to several limitations. These can be

summarised in five different categories. 1) environment representations : having a

planner independent from the perceptual system implies that the latter must create

an extremely accurate representations of the environment and communicate it to

the planner, which is not an easy task by any means; 2) egocentric descriptions :

the difficulty of generating accurate environment representations is further compli-

cated by the fact that robots like Shakey use egocentric perceptual systems, thus

not having a bird’s-eye view of the environment in which they are operating, but

merely a very limited one (although, it might be argued, a three-layer architecture

does not necessarily mean that the perceptual system has to be an egocentric one);

3) noise: when the input information is incomplete, noisy or partly wrong, there

is no guarantee that the planner will elaborate an efficient plan; 4) dynamically-

changing environments : since any non-controlled environment can change at any

given time, the correct execution of a plan developed in advance by a robot cannot

be guaranteed; 5) adaptiveness : given the dynamic nature of the real environments,

an additional problem arises: how can a robot deal with an unexpected modification

of the environment that occurs during the execution of an action and requires an

immediate response (e.g. an obstacle suddenly falls in front of the robot while it is

37

moving forward)?

2.1.3 Behaviour-based Robotics: embodiment and situat-

edness

In order to solve the issues of classic robotics, Rodney Brooks proposed in 1991 a

detailed critique to the current state of research in artificial intelligence, introducing

at the same time a novel approach to autonomous robotics, called Behaviour-based

Robotics [54].

The core of Brooks’ criticism [52] is based on the idea that the AI field (thus

reflecting on the classic approach to autonomous robotics) has been developed fo-

cusing too much on human intelligence, and particularly on what human intelligence

looks like today, ignoring it being the result of thousands of years of evolution. Ab-

stract reasoning and symbolic representations are usually considered as “granted”,

but the entire evolutionary process that has led to their appearance is ignored.

Furthermore, relying on the theoretical frameworks elaborated for example by Gib-

son [135] and Varela [379], Brooks criticised the use of abstract representations and

symbolic manipulation as the proper tools to identify the most prominent charac-

teristics of natural intelligence. According to Brooks, an intelligent system can not

be interpreted as a completely abstract system separated from the physical world.

It necessarily has to account for its own body and for the real environment in which

it operates, rather than on a representation of it.

Later, Pfeifer and Scheier [297] reinforced the theoretical ground of this ap-

proach stressing the concepts of “embodiment” and “situatedness”. With the term

embodiment, the two scientists refer to the fact that, having a body, an intelligent

system/agent is continuously subject to physical forces, to energy dissipation, to

being damaged, and, more in general, to any kind of influence exercised by the en-

vironment. Situatedness refers instead to the property of an intelligent system that,

being situated inside a real environment, can directly interact with it without the

need for symbolic representations.

Brooks believes that a system can be considered “intelligent” only if it can im-

38

plement sensorimotor behaviours within a dynamic and changing environment as

the real world generally is. The building blocks of an intelligent system must then

be the simplest sensorimotor behaviours, on top of which increasingly sophisticated

behaviours can be built. Each of these building blocks defines a basic but complete

behaviour and can control the robot directly accessing the information contained in

the real world. These basic behaviours can be seen as working in parallel, as op-

posed to the seriality characterising the classical approach to autonomous robotics.

Figure 2.2 graphically illustrates this point.

Figure 2.2: Graphical representation of the Behaviour-based approach. Source: [33]

Steels [357] reinforced the theorisation of artificial intelligence introduced by

Brooks by coining the term “Behaviour-oriented AI” to identify the pool of scientific

disciplines that study how the behaviour of agents emerges and becomes intelligent

and adaptive:

”[...] the success of the field is defined in terms of success in building
physical agents that are capable of maximising their own self-preservation
in interaction with a dynamically changing environment.”

Genghis [51] (see Figure 2.3), a six-legged (hexapod) walking machine capable

of walking over rough terrain and following a person passively sensed in the infrared

spectrum, was among the first examples of robots built by Rodney Brooks and his

group relying on their new design principle, summarised in what they defined as the

“subsumption architecture” [50].

Behaviour-based robotics differs from the planning approach in a number of

aspects. The most important one is related to the decomposition of the overall

behaviour exhibited by the robot into a series of simpler behaviours, from the most

39

Figure 2.3: Genghis the robot. One of the first robots built by Rodney Brooks’
research group relying on the Behaviour-based robotics approach. Source: http:

//www.ai.mit.edu/projects/genghis/

basic (e.g. move along a straight line) to the complex ones (e.g. avoid an obstacle).

Any sub-behaviour independently determines the robot’s activity and takes control

over the entire system when the contingent situation requires it (e.g. the module

dedicated to moving the robot along a straight line leaves the control to the obstacle-

avoidance module whenever the robot’s sensors detect an obstacle in front of it).

The outcome is that the overall robot behaviour is not determined by a pre-planned

rigid sequence of actions that must be updated whenever changes happen in the

environment, rather it is the emergent result of a highly complex interaction between

all the sub-behaviours the robot is capable of.

Furthermore, at no time during the execution of a given behaviour does the robot

have an explicit and complete internal representation of the environment in which

it operates. Rather it relies on very partial and continuously changing depictions of

the surroundings, depending on their relevance to the behavioural module in use.

These “representations” are essentially free of any descriptive character, and can be

seen instead as the series of stimulus-response reactions the robot can implement,

i.e. the sensorimotor behaviours generated by each module.

However Behaviour-based robotics suffers from three limitations. The designer of

a behaviour-based system still plays a crucial role in the development stage. It is the

experimenter who has to define how a certain behaviour must be decomposed in its

subparts, something which is not objective thus strongly depending on the designer’s

point of view. Second, there is the problem of categorisation. In order, for example,

to trigger an obstacle-avoidance behaviour, the robot must know that the object

40

it is facing is indeed an obstacle. How to classify obstacles is an activity that the

designer has integrated into the robot, relying on what he believes the sensorial

experience of the robot might be. Overall, even in Behaviour-based robotics the

designer’s footprint is present and (often indirectly) visible. Finally, as reported

for example by Cliff [73], as the number of dedicated modules in a behaviour-based

architecture increases, the complexity of the interactions between the individual

parts arises quickly, soon becoming intractable.

2.1.4 Evolutionary Robotics

The Evolutionary Robotics approach represents for the experimenter a departure

from the task of analysing and designing the controller for an autonomous robot,

introducing an automated design procedure instead. ER is inspired by the thought

experiments carried out by Valentino Braitenberg [49] during the 1970s and the

1980s, and by the field of Artificial Life [202] that at the time was receiving a great

deal of interest from the scientific community.

Braitenberg’s vehicles

“Vehicles: Experiments in Synthetic Psychology” [49] is the title of a book written

by Valentino Braitenberg during the early 1980s. In his book, the Austro-Italian

neuroscientist describes a series of thought experiments in which small autonomous

“vehicles”, driven by extremely simple internal controllers interacting with the ex-

ternal environment, behave in unexpectedly complex ways.

His research can be seen as one of the first “demonstrations” (although, as men-

tioned above, the work was a thought experiment) of how complex behaviours can

emerge from the interaction between the environment and extremely simple con-

troller architectures. Braitenberg stretched (possibly a little bit too far according

to some critics, as [63]) the interpretation of the behaviours displayed by his (imag-

inary) robots, using terms as “fear”, “aggression”, “love”, “foresight”, and even

“optimism”. Nonetheless, the issue highlighted by the scientist is that if we do not

already know the principles behind the vehicles’ operation (that are extremely sim-

41

ple indeed), just looking at the high level behaviour exhibited by the vehicles we

might end up with a complete misunderstanding of their basic working principles.

Braitenberg describes this phenomenon as the “law of uphill analysis and downhill

invention”, meaning that it is much more difficult to try to guess internal structure

just from the observation of behaviour than it is to create the structure that gives

the behaviour.

Figure 2.4: Sketch of two Braitenberg’s vehicles respectively attracted (a) and re-
pulsed (b) by a light source. Source: [49]

The importance of Braitenberg’s work is noteworthy from a philosophical per-

spective and it has provided a great source of inspiration for research in autonomous

robotics. While the philosophical implications have been briefly mentioned above,

Braitenberg’s research has helped to spread out an optimistic way of looking at the

research in autonomous robotics, suggesting that complex (intelligent) behaviours

may be easier to achieve than we believe. Moreover, the vehicles Braitenberg imag-

ined have proven to be fairly simple to build, leading to the appearance of at least

two families of robots built on similar principles, i.e. the Khepera [260] and the e-

puck [259] (see Figures 2.5(a) and 2.5(b) respectively). The research in Evolutionary

Robotics has made great usage of robots belonging to these two families [280].

The influence of Braitenberg’s work has spanned almost three decades. Al-

though his thought experiments never involved artificial evolution (although refer-

ences were made to this possibility across the test), some researchers, for example

Salomon [331], recently proposed interesting work focusing on the design/optimi-

42

(a) (b)

Figure 2.5: Two real robots taking inspiration by Braitenberg’s vehicles: (a) Khep-
era; (b) e-puck. Sources: [260, 259]

sation of Braitenberg-like controllers through evolutionary methods. Other work,

focusing on the evolution of the robots’ sensors, are exemplified in [228].

Artificial Life

The term “Artificial Life” was first introduced by Christopher Langton [202] who

defined it as:

“Artificial Life (“AL” or “ALife”) is the name given to a new discipline
that studies “natural” life by attempting to recreate biological phenomena
from scratch within computers and other “artificial” media. ALife com-
plements the traditional analytic approach of traditional biology with a
synthetic approach in which, rather than studying biological phenomena
by taking apart living organisms to see how they work, one attempts to
put together systems that behave like living organisms.”

The above definition is nicely summarised by the one provided, later on, by

Domenico Parisi [288]. According to the Italian scientist, Artificial Life is:

“[...] the study of living systems, carried out not dissecting and analysing
living systems existing in reality (as biology does), rather building living
artificial systems from the scratch.”

These two definitions look similar to each other (and both of them fail in defining

with accuracy what “life” actually is) and relatively general. The research in the field

carried out over the years has extended to cover several different areas concerning the

study of the systems related to life, its processes, and its evolution. Many natural

43

phenomena can now be examined through the lens of AL. The key concept which

operates as an umbrella linking together apparently unrelated areas of research into

artificial life is “emergentism” [48], which represents the idea that the properties

exhibited by a system are not necessarily the “sum” of the properties exhibited

by its sub-parts, rather the result of complex and often unpredictable interactions

between them.

Nowadays at least three main AL research streams can be identified:

• computer models : complex phenomena too difficult to be approached through

analytical methodologies can be investigated via the development of dedi-

cated computer models. Cellular Automata [395] and Agent-Based Modelling

(ABM) [44], thanks to their innately complex nature, are the primary method-

ologies used to study social phenomena. Computer models of Artificial Life

do not necessarily need to involve multitudes of individuals, since complex as-

pects can also emerge from the interaction between single individuals and the

environment in which they live. At the same time, various other phenomena

can be studied in computer models adopting a hybrid artificial life/complex

systems approach (e.g., volcanic eruptions [329], stock markets [286], etc.).

The scientific career of the aforementioned Domenico Parisi focused on the

study of psychological (and sociological) phenomena through their replication

in computer simulation models [5, 256, 340]. To achieve this goal, the ap-

proach proposed by the Italian scientist often consisted in building artificial

organisms according to the same metaphor being employed by Evolutionary

Robotics, i.e. with a neural network representing the “brain” of the organism

(to differentiate between these neural networks and “standard” ones, Parisi

coined the term “ALNN ”, standing for “Artificial Life Neural Networks”)

and an evolutionary algorithm as the tool required for its evolution. Langton,

as well, has been working on computational models for most of his career (see,

as an example, the popular “Langton’s ant” [201]);

• robotics : the role played by robotics in Artificial Life is a quite a controversial

one [53]. The main reason for using robots in AL simulations consists in

44

the possibility of extending (wherever possible) the scope of the experiments

carried out using simulated computer models, taking into account the concepts

of embodiment and situatedness. In reality, even artificial agents “living”

within small agent-based models can often be seen as embodied and situated,

thus blurring the line between computer simulated organisms and physical

robots operating in real environments;

• biochemistry : biochemistry, theoretical biology and complex systems were con-

sidered the most relevant areas with regard to artificial life when, in the early

1990s, the ECAL (European Conference on Artificial Life) conference was held

for the first time. Examples of work falling into these categories consist of mod-

els of protocells studied by Serra et al. [343]. More general approaches to the

synthesis of life can be found in [307]. This area of Artificial Life is regaining

a prevalent role today3.

Although we will not focus extensively on the relation between the work pre-

sented herein and the Artificial Life field, the computer models presented throughout

this thesis can be considered to be, to a certain extent, Artificial Life models.

Evolutionary Robotics: what it is and how it works

The Evolutionary Robotics approach aims to provide a solution to the issues related

to Rodney Brooks’ Behaviour-based robotics highlighted in Section 2.1.3. Although

nowadays the two approaches can sometimes appear to be in contrast with each

other, ER can effectively be seen as an extension of Behaviour-based robotics in

which even the basic behaviours - the building blocks - are left to an evolutionary

design process rather than being manually specified by the experimenter.

The procedure for the design of an autonomous controller for a robot - according

to the ER approach - relies on the employment of Evolutionary Algorithms (typically

3The website for the 2011 edition of ECAL (http://www.ecal11.org/) says, ”Back then,
in the early 1990s, the first two ECAL conferences in Paris and Brussels were mainly centred on
theoretical biology and the physics of complex systems. Today, we feel that Alife can look back
on these origins and take more inspiration from new developments at the intersection between
computer science and theoretical biologythus it is our wish to refocus the conference on complex
biological systems.”

45

Genetic Algorithms, which is the name used to describe the category of algorithms

that implement evolutionary processes similar to the one described herein (see Sec-

tion 2.4.5). It begins with the creation of an initial set (population) of different4

neural networks. These networks are subsequently associated, one by one, to the

real robot. They act as controllers, processing the input information fed through the

robot’s sensorial apparatus5 and producing an appropriate motor response which is

then executed by the dedicated apparatus of the artefact. The robot is deployed in

the environment and the performance of its controllers is evaluated in relation to the

execution of a specific task. The initial population is called, in biological terms, the

first generation. At the end of the evaluation phase, the controllers that have scored

the best results are preserved, while the others are discarded. Several copies of the

selected controllers are made, although slight changes in their behaviour are applied

through the introduction of random modifications in the neural network parameters.

This procedure leads to the appearance of a new population of controllers, of which

individuals are again evaluated. The process is reiterated until control systems that

are able to solve the reference task in an optimal way have appeared (see Figure 2.6

for a graphical representation of this approach).

As mentioned above, the preponderant aspect of this methodology consists in the

fact that the experimenter/designer does not play any role during the evolutionary

process, leaving to an automated procedure the responsibility of identifying the

optimal solution to the problem he wants to solve. It is not uncommon for the

experimenter to find out that the evolutionary algorithm has discovered a completely

unexpected, yet simple and efficient solution. This is partly due to the fact that

the system analyses the environment in a much more accurate way than what the

experimenter could do (thanks to the egocentric perception used by the robot),

attempting to exploit any possible source of evolutionary advantage, often in ways

that the external designer was oblivious to.

4At the beginning of the process, the various neural networks typically differ amongst them
because of different connection weights and biases. Most of the time the topology is fixed, although
this is not necessarily the case (see for example the NEAT framework [355]).

5In case of a pure sensorimotor controller. Neural network controllers can be much more so-
phisticated than these, dealing with input coming from inside the robot (”internal” environment),
memories, predictions, etc.

46

Figure 2.6: Graphical resume of how the Evolutionary Robotics approach works.
Source: http://nelsonrobotics.org/evolutionary_robotics_web/

Other differences, highlighted among others by Marocco [229], concern for exam-

ple the contrast between distal and proximal behaviour. The term “distal behaviour”

can be used when referring to the behaviour as seen by an external observer and

“proximal behaviour” can be used when we look at the same behaviour from inside

the robot, namely through its sensory apparatus. Behaviour-based robotics tends

to work from a distal behaviour perspective, because the designer uses this point

of view to deconstruct the problem and design the dedicated modules. In reality,

displaying a specific distal behaviour is not the goal of an agent. What an agent can

really do is to implement proximal behaviours that allow it to achieve its task. Dis-

tal behaviour emerges as side effect of a series of proximal behaviours6, each of these

strongly depending on the structure of the environment. Evolutionary robotics does

not take into account the distal behaviour components (because the human designer,

which is generally the reason for the introduction of such a bias, does not intervene

during the evolutionary process) focusing exclusively on proximal behaviours and

consequently stressing the concepts of embodiment and situatedness. The strong re-

lationship with the environment has been carefully studied by Nolfi and Parisi [282],

highlighting among several other aspects how every single movement performed by

6It is worth considering that the same distal behaviour can be the results of several alternative
combinations of proximal behaviours.

47

an agent affects the sensorial perception that it will experience in the immediate

future, thus triggering a whole chain of subsequent behaviours.

As a side note, from a technical and historical point of view it should be men-

tioned how training neural networks using genetic algorithms rather than “tradi-

tional” learning algorithms was an idea investigated by Montana and his colleagues

since the late 1980s [262], following the return of interest in neural networks pushed

by the introduction of the backpropagation algorithm. A more detailed survey of

the ways in which neural networks and evolutionary algorithms have been combined

together across the scientific literature can be found in [334].

Of course the Evolutionary Robotics approach is not free of issues and limita-

tions. For example, Miglino et al. [253] published an interesting analysis on the

role played by the computation time factor, thus highlighting the need for computer

simulations (which nowadays is, by far, the most commonly used approach) for the

evaluation of robots’ performances. Furthermore, for practical applications there

is still a general skepticism upon the use of neural network controllers for robots

dealing with sensible tasks (e.g. in the military domain). Despite studies as the

one recently published by Hauert and colleagues [160], where it has been demon-

strated that the reverse engineering of evolved neural controllers is possible, many

researchers still believe that neural networks work as unpredictable black boxes, thus

suggesting that their use should be avoided in tasks for which a high degree of accu-

racy is required. Nonetheless, several modifications of the “basic” ER approach are

possible to address some of its drawbacks. These alternative methodologies consist

for example in avoiding the “embodied trials” as suggested by Ficici and Pollack [107]

to speed up the evolutionary process. Furthermore, several works have focused on

reducing the so-called “reality-gap”, either mapping the reference environment us-

ing robots’ sensors and integrating this information within the computer simulators

used (as suggested by Nolfi et al. [281]), or applying Pareto-Based Multi-Objective

Evolutionary Algorithms [194]. We will return on the reality-gap issue later on.

48

2.1.5 A “cognitive” approach? The link with epigenetic

robotics

Although we have introduced the field of evolutionary robotics focusing on its role

as an instrument for the automated design of autonomous controllers for robots, the

ER approach can also be used to play more “cognitive” roles.

Robotics in itself (see the brief discussion we have made when introducing the

field of Artificial Life) can be seen as a modelling tool to create, test and validate the-

ories about cognitive phenomena [408]. As suggested for example by Marocco [229],

working in close contact with reality, robotics forces the models to be both solid and

rigorous (as for any computer model of a psychological theory), and to necessarily

take into account the complexity of a real environment. Thus providing a platform

for the study of the role played by embodiment and situatedness.

A theoretical framework for the application of evolutionary robotics to research

in psychology has been provided by Harvey et al. with the introduction of the

“minimal cognition” theory [155], according to which:

”Cognition [...] can be broadly defined as the capability of an agent of
interacting with its environment so as to maintain some viability con-
straint. It is not an internal property of the agent, but a relational
property that involves both the agent, its environment and the main-
tenance of some constraint. Living organisms are naturally cognitive
according to this definition as they need to engage in interaction with
their environment so as to stay alive - but the term can also be applied to
some artificial non-living systems, as long as we can clearly treat them as
agents and their viability constraints are well specified (and these could
be as artificial as maintaining certain relations with the environment,
self-preservation, or the fulfilment of a pre-specified goal).”

Applications of Evolutionary Robotics to the study of cognitive phenomena

have touched several aspects as for example the emergence of communication [219,

230], the evolution of cognitive scaffoldings [409], the learning through organism-

environment interactions (agent-based approach) [339], issues related to perception

in children [396], etc. More generally, when focused on the development of cogni-

tive systems, evolutionary robotics is often classified side by side with the emer-

gent field of (Cognitive) Developmental Robotics [392] (now more popular under

49

the name of Epigenetics Robotics [35, 185]) under the umbrella term of Cognitive

Robotics7 [71, 364]. Developmental Robotics, inspired indirectly by the vision of

Turing [372] and more closely by the scientific fields of neural development and

developmental psychology, focuses on the understanding of the cognitive develop-

mental processes that a robot would have to experience in order to exhibit resulting

“intelligent” (defined as “requiring cognitive capabilities”) behaviours. This ap-

proach shares some aspects with Evolutionary Robotics (neural networks are one

of the main instruments used, and the embodiment element is stressed), though it

does not necessarily rely on evolutionary methods.

The principles behind Developmental Robotics have also inspired robot builders

in designing humanoid platforms flexible enough to be used for experimentations in

the area [17]. The most prominent example of this approach is certainly the iCub

robot [333], built as an outcome of the European project Robotcub [332].

Figure 2.7: iCub robot. Source: http://www.robotcub.org/index.php/robotcub/

gallery/pictures

Across this thesis we mainly focus on neural networks as controllers for robots,

and Evolutionary Robotics as a methodology for adjusting the connection weights

7An attempt to define cognitive robotics has been made by British researcher
Paul Baxter on his Internet blog, http://paul-baxter.blogspot.com/2007/01/
what-does-cognitive-robotics-mean.html.

50

and biases of these controllers in order to make them able to perform specific tasks.

As we have already introduced, ER is based upon two main components, neural

networks and evolutionary algorithms. In the next sections we will provide a detailed

overview of both these fields. Before getting there, though, we must introduce the

field of control theory.

2.2 The basics of control theory

The research domain specialised in the study and design of robots’ controllers is

control theory [177], one of the founding areas of modern robotics. In this section

we briefly introduce some of the most important concepts in control theory, basing

most of our considerations upon the work published by Maja Mataric in 2007 [233].

Within control theory we can identify two main families of control models: feed-

back control (or “closed loop” control), and feedforward (also “open loop” control).

We will start this journey with a brief description of the concept of feedback con-

trol, together with some of the basics issues these sorts of controllers constantly face,

before quickly introducing the concept of open loop control.

2.2.1 Feedback (closed loop) control

Feedback control [96] is a means of getting a robot (or, more in general, any sort

of system) to achieve and maintain a desired state (which is usually called the “set

point”) by continuously comparing its current state with its desired state. This

continuous comparison is made possible by the “feedback” mechanism, meaning

that pieces of information helpful in determining the current state of the system

are collected and sent (“fed”) back to the systems controller. The aforementioned

desired state, also called “goal state”, is where the system wants to be (or, in different

terms, where its designer wants the system to be).

We can distinguish amongst two kinds of goals: achievement goals (states that

the system attempts to reach, as for example finding its way out for a robot navigat-

ing through a maze) and maintenance goals (states that the system must maintain,

as for example keeping a biped robot balanced and walking). The main difference

51

between these two goals is in the amount of work to be performed by the control

system to satisfy them. Achievement goals can simply be achieved or not, once

the robot (or the system) reaches its goal the job is done. Conversely, maintenance

goals require ongoing active work by the system. From an “historical” perspective,

it might be interesting to note that the control theory field has traditionally been

mostly involved with the design of controllers dedicated to maintenance goals, while

AI has always been more interested in developing systems concerned with achieve-

ment goals.

It is important to keep in mind that the goal state of a system can be related

either to internal or external states, or even to a combination of both. Think for

example to the popular iRobots Roomba robots8. In their control systems we are

able to identify both internal (keep the battery power level above a certain threshold,

move to the docking station to get recharged when that level becomes too low) and

external (vacuum the entire area) states that the robot must either maintain or

reach. Of course, most of the time a system of any sort will not be in its desired

state, but more or less far from it. This is where controllers kick in.

The error: magnitude and direction

Of fundamental importance for any kind of control system (either open or closed

loop) is the concept of “error”, which represents the difference between the current

and the desired states of a system. The goal of any control system is, in its very

essence, to minimise this error. In feedback control the error is explicitly computed

and used by the system to modify its current state in order to get it closer to

the desired state. The error can in fact constitute a great source of information.

From a theoretical perspective the error can be characterised by two components:

“direction” and “magnitude”. To clarify these two terms let’s think to the popular

“hot and cold” game played by children all over the world. When the person running

the game responds vocally (i.e. provides feedback) to the players actions, he is

providing information about both the direction of the error (close or far to the target)

and its magnitude (how close or far to the target). This information is processed

8http://www.irobot.com/uk/roomba/

52

by the player and used to correct his guess accordingly in order to get closer to the

(unknown) target location. The very same thing happens in autonomous systems

governed by feedback controllers. The system (e.g. a robot) collects information

about the current state (for example through its sensors) and produces a response

(e.g. a movement) aimed to switch to a new state closer to the desired one. In control

theory the parameters that determine the magnitude of the systems response are

called “gains”.

Figure 2.8 graphically shows a typical feedback controller for a generic industrial

plant. In this example the controller, receiving information about the current state

from the sensors, evaluates whether the system currently lies in the desired state or

not. If not, it operates a compensation sending motor commands to the actuators

of the plant. Once implemented in their corresponding motor operations these

commands drive the system to a new current state. The controller reads the new

current state through its sensors and repeats the above procedure, until a certain

goal is reached (in case it is an achievement rather than a maintenance goal).

Figure 2.8: Diagram of a typical feedback controller. Source: http://soundlab.cs.

princeton.edu/learning/tutorials/RealTime/realtime.html

When a human component plays a role somewhere within this control loop (for

example in determining whether the system should perform a certain operation or

not), it is said that we are facing a “man-in-the-loop” configuration.

There are several types of feedback control architectures. The mostly used ones

are arguably proportional control, proportional derivative control, and proportional

integral derivative control. These are commonly referred to as P, PD, and PID con-

trol respectively. In the next few sections we will explore their main characteristics.

53

Proportional control (P)

The idea behind proportional control simply consists in having the system to respond

in proportion to the measured error (i.e. applying proportional gains), relying on

both its direction and its magnitude. From a formal point of view a proportional

controller generates an output o correlated to the input i thanks to the use of a

certain proportionality constant (Kp in Equation 2.1, following the notation used

by Mataric [233]).

o = Kpi (2.1)

The value of Kp is task-specific and typically needs to be identified by the system

designer going through a trial and error methodology.

With a little bit of imagination it must be easy to figure out how a proportional

controller works in reality. Think for example of a robot whose aim is to drive along

a wall, keeping a certain distance from it. A proportional controller governing this

robot would measure the distance to the wall at specific time intervals and produce

in response a steering manoeuvre which is proportional in terms of magnitude to the

one of the error (i.e. the current distance to the wall) and which makes the error

decrease depending on its direction (i.e. steering the robot towards the wall if the

error is bigger than desired, away from it otherwise). Intuitively, such a controller

will make the robot continuously go closer and farther from the wall, in other words

oscillating (in a way progressively less “intense”) around the optimal distance until

this is eventually reached. Given these considerations it might therefore be interest-

ing at this stage to discuss about the problem of “damping”. A system is said to be

properly damped if it does not oscillate out of control, meaning its oscillations are

either completely avoided (which happens very rarely in any real-life application)

or they gradually decrease towards the desired state within a reasonable period of

time.

54

Derivative control (D)

Derivative control is intended to fix the oscillation problem implicit in proportional

control. To do so, a derivative controller operates on the momentum of the system

by controlling its velocity. As the system approaches the desired state, an amount

proportional to the velocity (the “derivative term”, calculated as (gain ∗ velocity))

is subtracted in the calculation of the required correction, thus compensating for

the momentum of the system as it nears the desired state.

A derivative controller generates an output o proportional to the derivative of its

input i according to Equation 2.2 (where Kd is again a task-specific proportionality

constant, not necessarily set on the same value as in Equation 2.1 [233]).

o = Kd
di

dt
(2.2)

Integral Control (I)

Integral control offers an additional improvement over P and D control introducing

the so-called “integral term”. The idea is that the system is able to keep track of its

own errors (in particular those repeatable, fixed errors called “steady state errors”)

and behave accordingly. The systems does so by summing up these incremental

errors over time until the sum reaches a certain threshold decided by the designer.

Once this happens the system performs a certain operation in order to compensate

for the error accumulated. An integral controller produces an output o which is

proportional to the integral of its i input as for Equation 2.3 (where Kf is our usual

proportionality constant [233]).

o = Kf

∫
i(t)dt (2.3)

It should be highlighted how integral control cannot be applied to all systems, but

only to those in which steady state errors can build up. For example, the controller

of the wall-following robot we discussed earlier would not be a valid candidate. A

better example would come from a lawn-mowing robot operating inside a rectangular

garden. The robot covers a straight line and, when it reaches the edge of the garden

55

it turns by a 90◦ angle, moves forward, and then rotates an additional 90◦ to get to

the next strip of grass. If there is a steady error lying in the rotation process (e.g.

the robot consistently turns 85◦ rather than 90◦) the lawn-mowing operation will

not be performed correctly. But if the robot has a way of measuring its error, it can

apply integral control to recalibrate itself.

PD and PID control

PD and PDI controllers, often seen in real-world applications, are simply combi-

nations of the types of control described above. Specifically, PD control is a com-

bination (sum) of proportional (P) and derivative (D) control terms which can be

formalised as for Equation 2.4 [233].

o = Kpi+Kd
di

dt
(2.4)

The very same thing can be said about PID control, in which proportional (P),

integral (I), and derivative (D) control terms are mixed together as it can be seen

in Equation 2.5 [233].

o = Kpi+Kf

∫
i(t)dt+Kd

di

dt
(2.5)

2.2.2 Feedforward (open loop) control

The reason why feedback control is also called “closed loop control” is that the

controller stays between the input and the output, effectively closing a circuit which

goes on as long as required (a “loop” indeed). The relationship between these three

elements is easily visible in Figure 2.8.

Although, a different control paradigm is possible. One of the most popular

alternatives to feedback control consists in feedforward, or also “open loop” control.

In feedforward control there is no feedback and the state of the system is not fed

back into it. The resulting “open loop”, despite being a useful metaphor, is not even

a loop indeed. Rather than looking at the current state of the system and adjusting

it accordingly to the distance from a specific desired state, in open loop control the

56

system makes a certain number of predictions. In order to decide how to act in

advance, the controller determines set points (or sub-goals) for itself ahead of time,

i.e. it predicts the series of states that it should go through in order to satisfy the

various sub-goals in sequence, and, eventually, the overall goal.

As the reader must certainly have noticed, we have not dedicated a huge amount

of time to describe open loop control. The reason lies in the fact that, although

interesting, this approach to the design of robots controllers tends to work effectively

if the reference environment is predictable and does not change in a meaningful

way. Unfortunately, these conditions are as far from the truth as they can be.

Furthermore, the evolutionary neural network controllers that we will see at work in

most of this thesis can be classified as particular types of feedback controllers [214].

2.3 Neural Networks (NNs)

The neural networks field originated in the 1940s, contemporarily to the birth of

Artificial Intelligence, when McCulloch and Pitts proposed the idea of an artificial

neuron [239]. Since the beginning, neural networks have played a significant role

on the AI research. In this section we will take a closer look at this domain. The

basic mathematical treatment provided is based upon Freeman & Skapura’s [124],

and Gurney’s [147] books.

2.3.1 McCulloch and Pitts’ artificial neuron (TLU)

The model introduced by McCulloch and Pitts (sketched in Figure 2.9), which per-

mits implementation on a digital machine, is characterised by three elements: one

or more inputs, an internal activation function, and one output. McCulloch-Pitts’

neurons can either be in an “on” or “off” state, and are switched on in response to

input stimulations that are high enough in terms of intensity to exceed a specific

threshold. The existence of a threshold led to define this computational model as a

Threshold Logic Unit (TLU9).

9As we will see later, a threshold function is not the only possible activation function for an
artificial neuron. Though, the McCulloch-Pitts’ model explicitly mentioned on/off neurons.

57

Figure 2.9: Graphical representation of a McCulloch-Pitts’ neuron. Source: [147]

We label the output of the neuron (i.e. its activation, or the value generated by

its activation function based on the input received) with the symbol y, while the

value of the threshold used is represented with the θ symbol.

When McCulloch and Pitts introduced the model of the artificial neuron, they

were using the real brain as a model, thus implying that neurons should not be

working in isolation, but rather connected to others, thus forming networks of neu-

rons (neuronal or neural networks). The connections are modelled through so called

“synaptic links” each of which having a numerical value associated to it representing

the “strength” (or “weight”) of the connection. Usually, the output y of one given

neuron constitutes either the output of the entire network or the input to a differ-

ent neuron. The overall contribution to the activation of one specific neuron comes

from the sum of all of its input values (xi), modulated through the weights (wi) of

the synaptic links carrying the signals. The activation value a for the neuron can

then be calculated according to Equation 2.6, where n corresponds to the number

of input connections.

a =
n∑
i=1

wixi (2.6)

As we mentioned before, the use of a binary threshold as activation function

implies that the output y of the neuron (on/off, or 1/0) varies depending on whether

the threshold has been reached or not. In mathematical terms, this can be expressed

58

as in Equation 2.7.

y =

1, if a ≥ θ

0, if a < θ

(2.7)

2.3.2 Hebbian learning

One of the first algorithms to be developed to make a neural network learn how to

perform a certain task was inspired by the work done by Donald Hebb. In 1949,

describing his hypothesis about “synaptic plasticity10”, the scientist stated [161]:

“When an axon of cell A is near enough to excite cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A’s efficiency, as one
of the cells firing B, is increased.”

Nowadays this quote is often stated in a simpler form as, “neurons that fire to-

gether wire together”. According to Hebb, the existence of synaptic plasticity within

animal and human brains is what allows for associative learning to be achieved.

This form of learning can also be seen at work in artificial neural networks.

When applied within this context Hebb’s principle dictates that the modification of a

synaptic weight wij, connecting neuron i to j, are dictated based upon the similarity

between the activation levels of the two units. The magnitude of the modification

to be applied is a topic which Hebb did not cover in his work. Later mathematical

formulations of his hypothesis have led to several equations. An example, which

includes a “learning rate” η (a parameter included between 0 and 1, which modulates

the ”speed” at which the learning is achieved), can be seen in Equation 2.8.

∆wij = ηij (2.8)

A classical and often cited example (e.g. in [124]) of Hebbian learning in neu-

ral networks focuses on classical conditioning, using the familiar experiment of

Pavlov [292]. Figure 2.10 is a representation of a neural network composed by

10We define as “synaptic plasticity” the ability of the connection, or synapse, between two
neurons to change in strength in response to either the use or disuse of transmission over synaptic
pathways.

59

two input neurons and one output neuron, respectively representing a sound input,

a sight input, and a salivation (output) signal.

Figure 2.10: A neural network capable of achieving classical conditioning learning.
Source: [124]

Assume that the excitation of neuron C, caused by the sight of food, is sufficient

to activate B, which is the neuron generating a salivary response. In the absence

of further stimulations, the ringing of a bell excites A, but its level of activations

is not enough to make B fire. If we generate the sound stimulus at the same time

the food is shown, A is now participating in the excitation of B. The Hebbian rule

will increase, time after time, the strength of the synaptic link connecting A to B,

making possible for A to activate B acting alone (i.e., in absence of stimulus coming

from C.)

From a more general point of view, Hebbian learning has several particularly

interesting features. First, it is an instance of an unsupervised learning procedure;

second, it is a local learning rule, meaning that it can be applied to a network in

parallel; third, it is simple and therefore requires very little computation; fourth, it

is biologically plausible.

2.3.3 The properties of TLU networks: a classification ex-

ample

What a TLU does is to separate its input patterns into two categories according to

its binary response (0 or 1) to each pattern. Looking from a geometric perspective,

these two categories can be seen as two different regions in a multidimensional space,

separated by a straight line or a plane (or a higher dimensional equivalent). If we

60

consider TLUs dealing with input patterns composed of two components only (x1

and x2, see Figure 2.11) we might represent these patterns in a two dimensional

space, as shown in Figure 2.12, where each pattern determines a point in this so

called “pattern space.”

Figure 2.11: A TLU characterised by two inputs (x1, and x2), a threshold function,
and a y output. Source: [147]

Figure 2.12: Pattern space generated by a two-input TLU. Source: [147]

A simple TLU like the one seen in Figure 2.11 can easily compute the most

common logic functions. Table 2.1 shows for example the activation/output table

for a TLU implementing a logic AND (the weights w1 and w2 are supposed to be

equal to 1). From a geometrical perspective, what the TLU does in such an example

is to draw a straight line inside the pattern space (Figure 2.12), separating the point

of coordinates (1, 1) from the other three points. This is what is called a “linear

separation” of classes. In more mathematical terms, the goal of a TLU is to correctly

classify a set of externally applied stimuli x1, x2, ...xn into one of two classes, C1 or

61

C2, thus working as a linear binary classifier.

Table 2.1: Activation/truth table for a two-input TLU implementing a logic AND

x1 x2 Activation Output
0 0 0 0
0 1 1 0
1 0 1 0
1 1 2 1

2.3.4 The limitations of perceptrons: dealing with non-linearly

separable classes

Soon after the introduction of the McCulloch-Pitts neuron, the research in neural

networks concentrated on identifying common properties shared by different network

topologies, as well as learning rules that could be applied despite differences between

neural architectures.

One of the most popular network models introduced was the “perceptron”‘ first

described by Rosenblatt [316, 317], with which the “perceptron training rule” was

soon associated. The consequent work of the “perceptron convergence theorem”

demonstrated how a perceptron trained this way can always end up with the proper

vector of connection weights to correctly classify between two classes of inputs that

are linearly separable [318]. A significant extension of the perceptron training rule

came from the introduction of the Delta Rule [171, 393], implementing a gradient de-

scent method. The Delta Rule provides several advantages when compared with the

perceptron rule. This is particularly true when facing problems that are not linearly

separable, i.e. for which an optimal solution does not exist. In such situations, the

Delta Rule is capable of making the weights vector converge towards a certain value

of w0, which differs minimally from the desired w. The solution is sub-optimal, but

is still a solution. The perceptron rule can not deal efficiently with those situations,

since it does not stop until the perfect solution is found, thus making the weights

vector oscillate between two (or more) alternative states. On the other hand, the

Delta Rule implements a never-ending learning process for which the termination

62

condition must be arbitrarily chosen by the experimenter. This may be a trivial

task in several domains.

The topic of non-linear separability was analysed in detail by Minsky & Papert

in their book “Perceptrons” [255], published in 197211. The work carried out by the

two researchers constituted a fierce critic to the neural networks field, in particular

against the perceptron architecture12. The main issue raised through a careful math-

ematical analysis by the two scientists focused on the impossibility for TLU network

architectures to deal with problems that are not linearly separable. To illustrate the

first point, Minsky and Papert used the now popular XOR (exclusive-OR) example.

The XOR is a logic function for which the truth table shown in Table 2.2 applies.

Table 2.2: Truth table for the XOR function

x1 x2 Output
0 0 0
0 1 1
1 0 1
1 1 0

Looking at a graphical representation of the problem (Figure 2.13), it is notice-

able how the two classes of output (0 and 1) are not linearly separable, i.e. they

can not be separated through a single line or a plane (or an higher-dimensional

equivalent). The XOR constitutes the simplest example of a linearly inseparable

problem.

The idea that a single TLU could not implement every Boolean function was a

known fact since McCulloch-Pitts’ work, as well as the fact that a more complex

network architecture, made of a multitude of interconnected neurons, could do the

job instead. What Minsky and Papert demonstrated was that such a complex

network architecture must be divided into layers in order to work. Layers imply

a hierarchy within the network, which can be thought of as being composed of one

layer of input neurons13, one or more layers of intermediate units, and one output

11A preliminary version of the book came out in 1969, but missing many details that were added
only a few years later.

12The term “perceptron” is used herein to indicate single-layer TLUs rather than perceptrons
in Rosenblatt’s sense.

13It is interesting to consider how there is no general agreement within the scientific community

63

Figure 2.13: The pattern space for the XOR operator. Source: http://www.

morphiles.com/ann/XOR/

layer (see Figure 2.14 for an example of a three-layer architecture).

Figure 2.14: Example of a multi-layer NN architecture. Source: http://nnf.

sourceforge.net/nnf1/doc/neuralnetworks.html

Consequently the problem became the training. We have seen how a network

using linear threshold function requires a layer of internal units to solve problems

as the XOR. But since there were no algorithms available to train the connections

between the input and the internal units at that time14, a perceptron could not

learn how to perform this classification. The XOR problem was chosen specifically

because of its simplicity. If a neural network cannot learn such a simple task, how

can it be expected to deal with far more complex domains?

about how to “count” the number of layers present into a network. Some authors consider the
input units as constituting a specific layer (despite the fact that the input neurons do not have
any activation function and the synaptic weights connecting them to the next layer have a fixed 1
value), while others do not.

14The underlying problem was the so called “credit assignment problem”, i.e. how to find a way
to assign the proper “credit” to the hidden layer in the determination of the output of a network.

64

Further criticisms raised by Minsky and Papert can be found in the much ap-

plauded review on the history of connectionism written by Medler [243].

2.3.5 Multi-layer perceptrons and the backpropagation al-

gorithm

The problem consisting in training multi-layer networks was solved only a few years

later, with the introduction of the “error backpropagation” principle by Rumelhart,

Hinton, and Williams [328] (though it had first been thought up by Bryson & Ho

in 1969 [55]). This principle, consisting in “backpropagating” the adjustments to

the connection weights of a network during the training, going from the output to

the input layer, was implemented in a supervised learning algorithm that proved

to work and being able to overcome the linear separation problem underlined by

Minsky and Papert.

We will avoid reporting herein the complete mathematical treatment that made

it possible to extend the gradient descent methods to multi-layer networks. However,

for the sake of completeness, we list the main resulting formulas.

Equation 2.9 is the general formula which calculates the ∆w correction for any

node k (either hidden or output) of the network. α represents the usual learning

rate, and xpki is the i, k-th component of pattern p.

∆wki = αδkxpki (2.9)

The parameter δk depends on the node considered. For output nodes δk must be

calculated according to Equation 2.10, however when the node considered belongs

to the hidden layer, the formula to use is expressed in Equation 2.11. Within these

two equations, tpk is the target output for the k output node, ypk is the actual output

generated by the network, wjk is the connection weight connecting the j neuron of

the hidden layer with the k neuron of the output layer, δj is the contribution that

intermediate node j plays on the determination of the output, and Ik is the set of

nodes that take an input from the hidden node k.

65

δk = σ′(ak)(t
p
k − y

p
k) (2.10)

δk = σ′(ak)
∑
j∈Ik

δjwjk (2.11)

In pseudocode form, the backpropagation algorithm can be expressed as in Al-

gorithm 1.

Algorithm 1 Error backpropagation algorithm for a network consisting of a single
hidden layer

initialise the weights of the network;
repeat

for each training pattern do
calculate the error between the network output and the teacher output for
the current training ptattern;
compute ∆wh for the weights from the hidden layer to the output layer;
compute ∆wi for the weights from the input layer to the hidden layer;
update the weights in the network;

end for
until the stopping criterion is satisfied;

2.3.6 Networks with memory

The introduction of the backpropagation algorithm and with it the awareness that

any kind of function could be approximated using neural networks, provided the

definitive boost to the field. Researchers started to investigate several different

subfields of the NN domain.

John Hopfield was among the first to think in terms of networks supporting a

non-unidirectional flow of information. This was the idea behind his “Hopfield net-

work” [167], a neural architecture exploiting recurrences in the internal data flow

to replicate phenomena such as “associative memories”. This property, which in

turn allows for the temporal dimension of information to be implemented in neural

networks, has been extensively investigated, after Hopfield’s work, resulting in the

introduction of two entire families of network architectures, i.e. the Simple Recur-

rent Networks (SRNs) and the Recurrent Back-Propagation Networks (RBPs) [237].

The SRNs field originated with the work carried out by Jeffrey Elman eventually

66

published in 1990 [101] with his seminal article “Finding structure in time”. Elman

introduced a simple network architecture (an example of which can be seen in Fig-

ure 2.15) made of three layers (input, hidden, and output), plus a set of “context

units” (the number of which is the same as the number of neurons contained in the

hidden layer). The network is fully connected, meaning that each neuron of one

given layer is connected to all the neurons of the next (forward) layer, except for

the context units. These are connected via a bidirectional link to the hidden layer

of the network, with a full “forward” and a 1-to-1 “backward” connectivity.

Figure 2.15: Example of an Elman network. Source: http://wiki.tcl.tk/15206

The context units provide a representation of the state of the hidden units from

the previous time step. Given the input at time t and the activation state of the

hidden layer at time t − 1 (stored in the context units), the entire network can be

trained via backpropagation to learn how to predict the next element (t + 1) of a

sequence which follows a certain generative rule. To reach this goal, the backpropa-

gation algorithm works on the connection weights that go from the input and from

the context units to the hidden layer, and to those going from the hidden to the

output units. The connections going backward from the hidden layer to the context

units are not trained as they are fixed on the value 1, only providing a mean of

“copying” values between the two layers.

Other than those presented by Elman, an additional example of SRN architecture

67

with a recurrent hidden layer can be found in [344].

Another kind of architecture belonging to the SRN family is the Jordan net-

work [182]. Jordan networks are similar to Elman’s except for two characteristics15.

First, the recurrent layer of the network is not the hidden but the output one. Sec-

ond, the values the context units receive are not a plain copy of those generated

by the output layer at the previous step (as in Elman networks), rather the values

present in the context units are scaled down by a certain factor and then added to

those produced by the output units at time t− 1.

2.3.7 Activation/transfer functions

We close this section about neural networks by describing the most commonly used

activation functions. In this chapter we have mainly discussed TLUs that are char-

acterised by a so-called “step function”. Neural networks often rely on more so-

phisticated transfer functions for their units, as for example the pure linear function

(2.12), the piecewise-linear function (as the linear relative, with the only difference

being that they only map a subset of the all possible values of x), the sign function

(Equation 2.13), the logistic (sigmoid) function (which returns only positive values,

as seen in Equation 2.14), and the hyperbolic tangent function (Equation 2.15).

y = x (2.12)

y =

+1, if x ≥ 0

−1, if x < 0

(2.13)

y =
1

1 + e−x
(2.14)

y =
e2x − 1

e2x + 1
(2.15)

All of these basic equations can be modified with the introduction of new terms,

15http://pyneurgen.sourceforge.net/recurrent.html

68

working either as offsets (as for Equation 2.12) or as modifiers of the function “steep-

ness” (as for the logistic/sigmoidal and the hyperbolic tangent functions.) Depend-

ing on the task the neural network is subject to, any of these activation functions can

be useful. During recent years sigmoid and hyperbolic functions have become a de-

fault choice among neural network designers, for both supervised and unsupervised

learning approaches.

2.4 Evolutionary Computation

This section introduces the field of evolutionary computation and explores its most

representative exponents. As this domain is inspired by natural evolution, we will

first discuss the evolutionary processes as they take place in nature amongst animal

species, and the specific terminology used.

2.4.1 The terminology

The current section aims to clarify the meaning of the terms that will be used when

discussing natural and artificial evolution.

Most of the living organisms can be seen, from a biological perspective, as collec-

tions of an extremely large number of cells. Each cell contains the same set of one

(or more) “chromosomes”. A chromosome can be divided into “genes”, functional

blocks of DNA, each of which encode a particular protein. To some extent, we can

see the genes as “traits” of living organisms (e.g. for a human being, the colour of

the hair or eyes). Each trait can assume a specific “setting” (continuing with the

previous example, “blue”, or “black”), which in turn gets the name of “allele”. Since

chromosomes are sequences of genes, a further term can be introduced to identify

the location/position of a gene within the sequence as its “locus”.

The whole collection of genetic materials that an organism is based on is named

“genome”. “Genotype”, although sometimes used as synonym for genotype, gen-

erally refers to a few specific genetic traits contained inside a genome. During an

organism’s development, the genotype gives rise to the individual’s “phenotype”, i.e.

the expression of the genotype in terms of bodily characteristics.

69

When it comes to evolutionary computation, and to genetic algorithms in partic-

ular, according to convention used [257] the term chromosome is typically referred to

as a candidate solution to a problem. The genes are blocks of one or more adjacent

bits encoding a particular element of the candidate solution and the alleles are the

possible values that a gene can assume at each locus. The genotype of an individ-

ual in a genetic algorithm is simply the configuration of bits (or different symbols,

according to the encoding alphabet used) in that individual’s chromosome. Some-

times a genotype has to be converted into its correspondent phenotype in order to

be evaluated as a candidate solution for the problem. Often there is no need for

such translation, and therefore there is no explicit notion of phenotype at all. All

of these aspects will be seen in the section dedicated to genetic algorithms.

2.4.2 On natural/biological evolution

The modern theory of species evolution, still the object of controversy amongst

Christian integralists today, dates back to Charles Darwin’s “On the Origins of

Species by Means of Natural Selection” [83].

Inspired by the studies carried out by Malthus on the dynamics of popula-

tions [226] and by countless hours spent studying animal breeders, Darwin elab-

orated a simple but nonetheless detailed framework accounting for the two easily

observable phenomena of adaptation (how a population becomes suited to its habi-

tat) and speciation (the arising of new species). The British scientist introduced the

concept of ”natural selection” as an equivalent (though governed by the nature) of

artificial selection. According to Darwin, spontaneous variations that occur within

a population of organisms in relation to their traits may cause some individuals

to survive and reproduce more successfully than others in their current environ-

ment16. In this way, the advantageous traits are transmitted to the offspring and

increase their concentration over time. His ideas, despite being less radical than

what it is commonly thought were nonetheless shocking, since they were challenging

the religion-inspired view according to which animal species are “fixed”. Darwin

16This phenomena is also known today by the name of “differential evolution.”

70

demonstrated, with an abundance of evidence, that species continuously change

over time. Later on, Herbert Spencer introduced the definition of “survival of the

fittest” [353] to summarise Darwin’s hypothesis.

Why changes happen and how they are inherited by the future generations was

not clear to Darwin. To some extent - although he disagreed with him on several

topics17 - he was in agreement with Lamarck’s theory on “the influence of circum-

stances” (or “use or disuse”) [65], thus implicitly accepting the idea according to

which favourable traits can be developed during the life of an individual and subse-

quently transmitted to the offspring. It is interesting to consider how, despite being

a contemporary of Gregor Mendel, father of modern genetics, Darwin developed his

hypothesis without any notion of genetic inheritance available.

It was only during the 20th century that the so called “modern evolutionary syn-

thesis” [200] (also known as “neo-Darwinism”18) managed to create a link between

Darwin’s ideas and the knowledge of genetics available at the time. According to

this interpretation, natural selection operates on the phenotype of an individual,

i.e. the observable characteristics of an organism, rather than on its genotype. The

genotype is instead considered as the (inheritable) basis of any phenotype and can

mutate (sometimes generating variations in the phenotype) because of several rea-

sons, mainly migration between populations (gene flow), and reshuffling of genes

through sexual reproduction. Variation also comes from exchanges of genes between

different species; for example, through horizontal gene transfer in bacteria, and hy-

bridisation in plants. This view also implies that not every aspect of a phenotype

can be transmitted to subsequent generations, as well as the fact that traits ac-

quired in life can not. Furthermore, neo-Darwinism emphasises the role played by

chance [168], particularly with regard to the genetic drift19 phenomena.

17Particularly on Lamarck’s hypothesis about the “ladder of complexity” followed by animal
species during evolution.

18It is interesting to consider how there has been, until few decades ago, a general skepticism in
defining these views as “theories”, as demonstrated for example by Lovtrup [223].

19Genetic drift can be roughly defined as the change in the frequency of a gene variant (allele)
in a population.

71

2.4.3 Evolutionary Computation: an overview

The term Evolutionary Computation refers to a wide range of computer-based

approaches that tackle specific problems mimicking what takes place in natural-

biological evolution. In their essence, evolutionary computation approaches can

be considered optimisation/search methodologies applied to domains that are too

complex to be approached with the traditional instruments. As we will see in the

following section and in the rest of this thesis, evolutionary computation tools have

been and can be applied to countless domains.

The field of evolutionary computation is traditionally considered to be divided

into three subcategories, namely Evolution Strategies (ESs), Genetic Algorithms

(GAs), and Evolutionary Programming (EP) [118, 257]. Fogel & Fogel [118] explain

the reason behind this classification looking at the level in the hierarchy of evolution

being modelled: respectively the individual, the chromosome, and the species (see

Table 2.3).

Table 2.3: The subfields of Evolutionary Computation and the corresponding level
in the evolution hierarchy they model

Subfield Level in the hierarchy of evolution being modelled
Evolution Strategies The individual
Genetic Algorithms The chromosome

Evolutionary Programming The species

This classification is not universally agreed. Muhlenbein [269] and Goldberg [138],

for example, tend to put evolution strategies and evolutionary programming under

the umbrella term of Evolutionary Algorithms (EAs), as opposed to genetic algo-

rithms (a point backed up with philosophical reasoning by Fogel [117]). Other au-

thors, such as Back [19] seem instead to be using the term “evolutionary algorithm”

as a more general category which refers to every computer algorithm that mimics, in

silico, the mechanisms of biological evolution20. Koza and Poli [197] tend instead to

consider Evolutionary Programming (and Genetic Programming more specifically)

as a subcategory of Genetic Algorithms.

20Back also inserted Classifier Systems [133] (CFS) into the evolutionary algorithms family.

72

In the next sections GAs will be discussed in more detail, since they play a crucial

role in Evolutionary Robotics, while we will provide a brief overview on Evolution

Strategies and Evolutionary Programming/Genetic Programming.

2.4.4 Evolution Strategies (ESs)

Evolution strategies (ESs) [39, 40] are the first of the three categories in which we

have decided to divide the evolutionary computation field21. To some extent and

from a historical perspective, despite appearing only few years later and being de-

veloped independently, Genetic Algorithms can be seen as an improvement over the

earlier experimental evolution strategies algorithms. Thus, the reason for starting

our survey about evolutionary computation from the evolution strategies.

The ES field originated with the work carried out by Rechenberg during the

1960s [308], in which he introduced an evolutionary-like (i.e. one that was inspired

by biological evolution principles) approach to optimising real-valued parameters

related to the aerodynamic design of minimal drag bodies in a wind tunnel. Rechen-

berg’s ideas were further refined and developed by Schwefel in the 70s. Originally,

evolution strategies (also known at that time as “cybernetic solution paths”) were

developed as a [40]:

”[...] set of rules for the automatic design and analysis of consecutive
experiments, [carried out] with stepwise variable adjustments driving a
suitable flexible object/system into its optimal state in spite of environ-
mental noise.”

These rules were just two indeed:

1. change all variables at a time, mostly slightly and at random;

2. if the new set of variables does not diminish the goodness of the device, keep

it, otherwise return to the old status.

Rule number 1 resembles random mutation as it happens in nature according to

Darwin’s theory of evolution. The second rule reverts instead the “survival of the

21Consider for example how Beyer [39] sees evolution strategies as a sub-class of Evolutionary
Algorithms, rather than an independent one.

73

fittest” principle. From these two points comes the reference to evolution. In this

basic form, the evolutionary process generates - at each generation - one offspring

from one parent. Since the selection takes place among these two, this kind of

evolution strategy is referred to as “two-membered evolution”, often shortened as

(1 + 1)− ES.

Further developments introduced Gaussian distributed mutations in place of the

“traditional” binomially distributed ones, mutation rates adapting in real time, and

the use of multi-individual (or multimembered) populations. These modifications

led to the birth of the so called (µ + 1) − ES evolution strategies (also known as

“steady-state ESs”) [309]. Later on, Schwefel [342, 341] proposed two additional

modifications of the ESs then used, i.e. the (µ + λ)− ES and the (µ, λ)− ES. In

the first one, at any generation not just a single offspring is created, but rather λ

(with λ ≥ 1); in order to keep the population size constant, the λ worst individuals

out of the entire µ + λ population are discarded. In the (µ, λ) − ES the selection

takes place instead among the λ offspring only, with the parents “forgotten” no

matter what their fitness is compared to that scored by the new generation.

Since then, countless modifications of the canonical evolution strategies out-

lined in this section have been proposed, discussed and evaluated. The applica-

bility of ES has also been extended to different fields. Schewefel, for example,

participated with Rechenberg and Peter Bienert to the development of FORO 1

(FOrschungsROboter), an evolvable robot [245]. An outdated but nonetheless de-

tailed review on techniques and applications of evolution strategies can be found in

Back et al. [20].

2.4.5 Genetic Algorithms (GAs)

The most representative examples of evolutionary algorithms are the Genetic Al-

gorithms (GAs) [257, 354], introduced by John Holland during the 1960s [166].

Holland’s work was mainly a theoretical one. What he was interested in study-

ing was the phenomenon of adaptation as it occurs in nature, aiming to import

it into computer systems. For most of his career Holland kept working on the

74

theoretical foundations of evolution/adaption eventually developing the “schemas

framework22.” Lately - and independently from this mainstream - De Jong [87]

demonstrated how GAs could be successfully used for parameter optimisation, thus

extending the applicability range of genetic algorithms to countless domains.

GAs mimic species evolution in the sense that they are algorithms relying on two

complementary mechanisms similar to those observed in nature: selection (survival)

of the fittest individuals, and genetic variation intervening during reproduction. Se-

lection operates based upon a “fitness function”, which returns a numerical value (or

a relative rank) representing “how fit” a certain individual belonging to a given pop-

ulation is according to the problem investigated (i.e. the “environment”). Genetic

variation takes place through “genetic operators” instead, i.e. mathematical con-

structs that provide to recombine the chromosomes in the population while moving

from one generation to the next one.

As mentioned above, a common use of Genetic Algorithms nowadays is in pa-

rameter optimisation/function approximation. In such applications, an initial popu-

lation is made of randomly generated chromosomes representing candidate solutions

(individuals) to the problem tackled. The population is then evolved until a satis-

factory solution (e.g. an acceptable approximation or set of parameters, evaluated

through the use of the fitness function) is identified.

Encoding

The process through which the “informative content” of a solution/individual is

translated into a genome is known by the term “encoding”. The most popular

kind of encoding used in GAs is the binary one, introduced as the default choice

by Holland, in which the candidate solutions are encoded as strings of 0 and 1

values. When the original values are integer digits, the encoding can take place

as a pure mathematical operation (decimal to binary conversion). Dealing with

real values which have a decimal part can make things slightly more complex. A

common solution adopted by researchers working in the evolutionary computation

community consists of dividing the genome into an integer and a decimal part and

22http://en.wikipedia.org/wiki/Holland\%27s_Schema_Theorem

75

dedicating a (fixed) specific amount of bits to each of them. Of course, in order to

evaluate the validity of a certain solution (i.e. to compute its fitness value) when

a binary or a similar encoding has been used, a “decoding” operation is needed.

Genetic algorithms do not necessarily require binary genomes, although this kind of

encoding allows for a wide range of genetic operators to be used. Although quite

rarely used, genomes of real values can nonetheless be found in a significant amount

of scientific publications.

Selection methods

Selection is the process which guarantees that the fittest individuals have, on aver-

age, a larger amount of descendants compared to the less fit individuals. Various

mechanisms (often defined as “schemes”) can be used to implement selection. Orig-

inally, Holland used a fitness-proportionate selection method in which the expected

value (i.e. the expected number of times an individual is selected for reproduction)

was simply calculated as the fitness of the individual divided by the average fitness

of the entire population. Over the years, many more sophisticated selection methods

have been introduced. A list including the most popular ones nowadays follows.

• fitness-proportionate selection: “modern” fitness-proportionate selection meth-

ods are often implemented using the method of “roulette wheel” sampling.

According to this methodology each individual is assigned a slice of a circu-

lar roulette wheel, the size of the slice being proportional to the individual’s

fitness (see Figure 2.16).

The wheel is then rotated N times (where N is the size of the population)

and every individual on which the marker stops at any spin enters the pool

of parents for the next generation. Although this approach, statistically, will

lead to every individual having the expected number of offspring, the small

population sizes typically used in GAs makes it possible for unlikely spins

of the roulette wheel to introduce severe biases in the evolutionary process

by selecting not-so-fit individuals. This problem is refered to with the term

“spread” (referring to the range of possible actual values given an expected

76

Figure 2.16: Graphical representation of the fitness-proportionate roulette wheel
selection scheme. Source: http://www.edc.ncl.ac.uk/assets/hilite_graphics/

rhjan07g02.png

value).

An alternative sampling method developed to cope with the above drawbacks

is the “stochastic universal sampling” (SUS) [23]. Where fitness-proportionate

selection by means of roulette wheel chooses several solutions from the popula-

tion by repeated random sampling, SUS uses a single random value to sample

all of the solutions by choosing them at evenly spaced intervals. To do so,

the imaginary roulette wheel does not use a single marker, rather N of them,

equally spaced.

As pointed out by Hancock [148], notwithstanding which sampling method is

used fitness-proportionate selection suffers from “premature convergence” due

to scaling problems. Premature convergence [183, 314] is a phenomenon taking

place when an evolutionary algorithm gets stuck in a point of local optima of

the search space, without being able to reach the gloabl optima, i.e. the best

solution that the algorithm could potentially find (we will get back on this

point in a following subsection of this paragraph). This problem can be par-

tially mitigated in different ways. For example adopting scaling methods that

map “raw” fitness values to expected values. A classical example of scaling

77

method is the “sigma-scaling” [121, 137] which helps to keep the selection pres-

sure (i.e. the degree to which highly fit individuals are allowed many offspring)

high and pretty much constant over time. This goal is achieved calculating

individual’ expected value as a function of several parameters, specifically its

fitness, the average population fitness and the standard deviation. Another

way to address this issue is by using methods that vary the selection pressure

according to the evolutionary dynamics. An example of such an approach is

the “Boltzmann selection”, which allows the less fit individuals to reproduce at

a similar rate to the one assigned to fitter individuals during the early stages

of the evolution in order to mantain a certain level of variation within the

population until a certain stage is reached;

• rank selection: although from some points of view it might somewhat be con-

sidered just another variation of the fitness-proportionate selection created to

prevent premature convergence, rank selection [22] works in a slightly differ-

ent way. In rank selection there is no need for scaling, as the individuals are

ranked based on their fitness values. The expected value for each individual

is calculated according to its rank. Making the absolute fitness information

disappear, ranking helps in reducing the selection pressure when the fitness

variance is high;

• tournament selection: both fitness-proportionate and rank selection methods

are quite expensive in computational terms, as they require passing several

times through the entire population performing different kinds of computa-

tions. From this point of view, tournament selection [139] is a significantly

more efficient solution. According to this selection scheme two individuals are

chosen at random from the population and a random value r, uniformly dis-

tributed between 0 and 1, is calculated. Depending on whether this value is

above or below an arbitrary threshold fixed by the experimenter, one of the two

individuals is selected to be a parent. After the instance of the “tournament”

the two individuals selected are brought back into the original population to

be, potentially, selected again;

78

• steady-state selection: the selection schemes we have seen so far operate within

the context of algorithms that tend to recreate entirely new populations at

every generation. When steady-state selection [380] is used, only a few indi-

viduals are selected. These are the least fit individuals that are going to be

replaced. This procedure provides several advantages in specific domains, as

for example when evolving rule-based or classifier systems (see [133]).

Elitism [87], a simple tweak in the evolutionary algorithms that forces it to

preserve unmodified the fittest individual at any given generation, is a commonly

adopted modification to the selection operators described above.

An empirical comparison between alternative selection schemes is the subject of

the extensive work carried out by Hancock [148].

Interestingly enough, in the scientific literature there is disagreement concerning

whether to consider the selection a “genetic operator” or not. In this thesis we have

decided to consider selection and elitism to be two separate operators, and “genetic

operators” those (listed in next subparagraph) that actively produce modifications

on the individuals’ genomes.

Genetic operators

One of the most significant innovations introduced by Holland on top of the work

on evolutionary computation (evolutionary strategies) previously carried out by

Rechenberg [309] consists in using both multi-individual populations and genetic

operators (as the crossover we will see next) working on multiple individuals at once.

Genetic operators operate when moving from one generation to the subsequent one.

They work modifying the genome of certain individuals mimicking phenomena that

occur in nature (random mutation, genetic recombination, etc.).

The genetic operators used by Holland can be summarised in the following list:

• mutation: for one or more genes of the chromosome its/their corresponding

allele/s is/are switched to the alternative value;

• inversion/variation: the order of a contiguous section of the original chromo-

some is reversed;

79

• crossover : mimicking genetic material recombination, crossover creates a new

genome that inherits from both parents. In essence, subparts of the two start-

ing chromosomes are exchanged around one or multiple “cut-points” (giving

rise to “single-point” and “multiple-point” crossover respectively).

As can be easily seen, mutation and inversion/variation operate on single indi-

viduals, while crossover requires the genomes coming from two parents. Figure 2.17

shows mutation, inversion/variation and single-point crossover in action.

Figure 2.17: Graphical examples of how mutation, inversion/variation, and single-
point crossover genetic operators work on binary genomes. Source: http://

bioinformatics.istge.it/bcd/Curric/ProtEn/111.html

Every genetic operator is typically associated with a certain probability of being

used during reproduction. In the rest of this thesis we will refer to these proba-

bilities as: pc for the crossover operator; pm for the mutation operator; pi for the

inversion/variation operator.

Since the binary one is the most frequently kind of encoding used, most of the

genetic operators elaborated over the last decades have been designed to cope with

such genomes. On the other hand, despite having been introduced by Holland in his

seminal work, the inversion/variation operator finds little (if any) usage in today’s

GAs. Although the operators that have been described herein have been assumed

to be dealing with binary genomes, some of these have been applied to genomes

encoded in alternative ways. An example consists in the crossover operator used by

Montana and David [262], which works on real-valued genomes.

80

Parameter tuning

A crucial decision to make in implementing a genetic algorithm consists in how to

set the values for the various parameters, such as the size of the population and

the rates associated to the genetic operators employed. This task is everything but

easy, as the interaction between the various parameters is nonlinear, meaning that

they cannot be optimised one at a time. Furthermore, a GA relying on a certain set

of parameters might work well in a certain scenario, but quite badly when applied

to a different domain instead. This often means that there is little use in looking

at the scientific literature in search of inspiration. Literature that, according to

Mitchell, does not provide conclusive results on what are the best parameters to use

anyway [257].

There has been nonetheless several attempts to identify a universal set of param-

eters valid for most of the GA applications. One of the first research in this direction

is the work done by De Jong [87], who tested different sets of parameters against

several benchmark scenarios. His results suggested that generally optimal parame-

ters are: population sizes (N) included between 50 and 100 individuals, single-point

crossover applied with pc = 0.6, mutation rate pm = 0.0001 per bit. These settings

were widely adopted and used by the GA community for years. Then, more than a

decade later, Grefenstette [146] carried out further studies based on a “meta-GA.”

As genetic algorithms can be seen as function optimisators, the scientist’s idea was

to use a GA to optimise the parameters of a different genetic algorithm. The results

he obtained advise for the use of smaller population sizes, elitism, and higher oper-

ator rates: N = 30, pc = 0.95, and pm = 0.01. Schaffer et al. [335] ended up with

very similar results after having spent over a year of CPU time carefully testing a

wide range of parameter’s combinations on different problems.

An algorithmic view

All in all, the description of a simple/generalised GA has been provided in a schematic

form by Mitchell [257], and can be seen translated in pseudo-code in Algorithm 2.

81

Algorithm 2 Basic functioning of a GA

create a randomly generated population of n l-bit chromosomes;
repeat

for each chromosome do
calculate fitness value f(x);

end for
select a pair of parent chromosomes from the current population (probability
of selection being an increasing function of their fitness);
with probability pc cross over the pair at a randomly chosen point (chosen with
uniform probability) to form two offspring;
mutate the offspring at each locus with probability pm;
replace the two parents with the offspring;
if n

2
6= 0 then

discard at random one of the new population members;
end if
replace the current population with the new one;

until a certain number of generations have been generated;
return the chromosome with the highest fitness value;

Fitness landscape and search space

We enter now into a brief discussion on the concepts of “fitness landscape”, first

introduced by Wright back in 1936 [398], and “search space.”

The idea behind fitness landscapes consists in the possibility of graphically rep-

resenting a set of genotypes/phenotypes and their corresponding likelihood of re-

producing (fitness values) in the same plot (an example is shown in Figure 2.18).

Fitness landscapes can be portrayed as N-dimensional graphs (where “N” cor-

responds to the number of genes for the candidate solution), in which both valleys

(regions from which most paths lead uphill, i.e. towards points with higher fitness)

and peaks (points from which all paths are downhill) are present. Their impor-

tance in evolutionary computation is in that they provide a useful metaphor to

understanding what happens when evolutionary optimisation techniques, as genetic

algorithms, are at work. As exemplarily summarised by Mitchell [257]:

“According to Wright’s formulation, evolution causes populations to move

along landscapes in particular ways, and “adaptation” can be seen as the

movement towards local peaks.”

An evolving population typically climbs uphill in the fitness landscape, through

progressive modifications of the genomes of their members, until a peak is found.

82

Figure 2.18: Example of a fitness landscape for a two-gene genome. In this case the
fitness value is represented on the vertical axis, while the other two axes identify the
values the two genes can assume. This landscape is characterised by three peaks and
large valley areas. Source: http://ieatbugsforbreakfast.wordpress.com/2011/03/

04/fitness-functions/

Such peaks can be either “local optima” (i.e. points that constitute peaks for a

limited region of the space, but that are not the highest peak in the entire landscape)

or “global optima” (the highest peak across the landscape).

Genetic operators determine the direction and the magnitude that an evolution-

ary process takes across the fitness landscape. A typical evolutionary run performed

on a multi-individual population starts with the individuals randomly scattered

along the fitness space. Because of the effect played by the selection operator, those

located into the valleys tend to disappear, while those closer to the peaks repro-

duce. The genetic modifications intervening during reproduction give rise to new

individuals, deployed into positions close to the ones in which their parents were.

Parameters such as the mutation rate (i.e. the frequency according to which random

mutations in the genome occur) and the crossover rate (i.e. the same as the muta-

tion rate, but applied to the crossover operator) influence the distance in the fitness

space between the offspring and the parents (an interesting discussion about the

role played by the crossover operator can be found in [258]). A trade-off is generally

required. The evolutionary process can reach a local optima point reasonably fast if

high application rates are used for the genetic operators, but at the same time it will

be extremely unlikely to reach a global optimum or ending up in a stable state in

83

which the genomes of the entire population converge to a similar one. On the other

hand, using rates that are too low can make the evolutionary process extremely time

consuming and still does not guarantee the identification of a global optimum23.

The wider the variety of variables constituting a genome, the more the dimen-

sions that a fitness landscape can assume, quickly becoming unrepresentable from

a graphical perspective. Nonetheless, they preserve their explicative content as

metaphors of what happens during computer-based evolution.

Fitness functions

With regard to the role played by the fitness function, the structure of the fitness

formula (also “objective function”), which strongly depends on the kind of task under

examination, is used to shape the fitness landscape. Continuing with the metaphor

we are using, we may argue that what we want to achieve when designing a fitness

function is a “regular” landscape (intended as the less irregular possible), a kind

of environment which is easy to explore for the population, lacking in local points

of minima/optima and having a single easily-identifiable optimum. Unfortunately,

for problems of significant complexity, it is more or less impossible to predict in

advance what kind of landscape a certain fitness function would create24. Most of

the time the experimenter has to go through a trial and error procedure, which is a

highly time consuming approach and makes it hard to compare the results coming

from different fitness functions. Nonetheless, certain guidelines can be followed.

In the context of autonomous robotics, for example, Nolfi and Floreano [280] have

proposed the “fitness space” as an objective framework for describing and comparing

alternative fitness functions. The fitness space is defined by three “dimensions”: 1)

functional-behavioural, which determines whether the fitness is based on the control

system or on the robot behaviour; 2) explicit-implicit, indicating the number of

23Genetic Algorithms are optimisation methods that do not guarantee to reach points of global
optimum, though they guarantee instead that a (local) optimum will be identified.

24As Nolfi and Floreano [280] have interestingly highlighted, “In artificial evolution the fitness
function is used to evaluate the performance of individuals and to select the best ones. The result
of an evolutionary run depends very much on the form of this function. Fitness functions for
autonomous robots usually include variables and constraints that rate the performance with respect
to the expected behaviour, but these variables and constraints are difficult to choose because the
behaviour evolved by the robot is not fully known in advance. Actually, the degree of knowledge of
an expected behaviour is inversely proportional to the appeal of using artificial evolution.”

84

external variables the fitness function uses; and 3) external-internal, which states to

what extent the fitness function’s variables are accessible to the control system. A

graphical representation can be seen in Figure 2.19.

Figure 2.19: Graphical representation of the fitness space. Source: [280]

Lima et al. [215] have analysed the process of designing fitness functions in cost

evaluation-based problems. With regard to the subject of this thesis, a recent review

specifically focused on fitness functions used in Evolutionary Robotics can be found

in [276].

2.4.6 Evolutionary Programming (EP)

The Evolutionary Programming (EP) field [118] originated with the pioneering work

by Fogel, Owens, and Walsh [120]. The original authors’ motivation for evolution-

ary programming centred on generating an alternative approach to artificial intel-

ligence25. Rather than emulating/simulating intelligent beings in terms of neuro-

physiological structure or particular behaviours exhibited, the idea was to use the

natural evolution metaphor as a model to generate artificial organisms of increasing

“intellect” over time. From this point of view it is important to consider what Fogel

and colleagues meant for “intelligence” and “intelligent behaviour”. Their definition

of intelligence concerns “the ability of an organism to achieve goals in a range of en-

vironments.” Consequently, intelligent behaviour is defined as something “requiring

25A detailed comparison between evolutionary programming and evolution strategies can be
found in [21].

85

the ability to predict future environmental occurrences coupled with a translation of

those predictions into suitable responses.” [119]

Genetic Programming (GP)

Genetic Programming (GP) [197] is a subcategory of the EP field which is devoted

to the evolution of computer programs. Simple instructions, written in source code

for a specific computer programming language, are combined together in agreement

with a certain set of rules. The resulting programs are evaluated in relation to the

execution of a given task, then modified and mixed together, mimicking evolutionary

metaphors.

A more formal definition is provided by Koza and Poli [197], according to whom

genetic programming is:

“[a] domain-independent method that genetically breeds a population of
computer programs to solve a problem. Specifically, genetic program-
ming iteratively transforms a population of computer programs into a
new generation of programs by applying analogs of naturally occurring
genetic operations.”

In GP, programs are expressed as “syntax trees” rather than as lines of code. A

tree includes “nodes” (also “points”) and “links”. The nodes indicate the instruc-

tions to be executed, while the links indicate the arguments to be provided to each

instruction. For this reason, nodes within a tree can be called “functions”, while

the tree’s leaves can be defined as “terminals26”.

Genetic programming trees can be seen either in a graphical form (see the exam-

ple in Figure 2.20) or expressed in “prefix notation”, with functions always preceding

their arguments. An example of such a syntax, also used by some computer pro-

gramming language as LISP, can be seen in the following example. Supposing there

is a function called max() that accepts two input arguments and determines which

one is the larger. In a “traditional” infix-notation a call to this function would look

like max(x ∗ x, x+ 3 ∗ y). In prefix-notation the same function would be expressed

ad (max(∗xx)(+x(∗3y))) instead.

26In more advanced forms of GP, programs can be decomposed in several subroutines. In this
case the tree representation consists in a set of trees (one for each component/subroutine), grouped
together under a special node called “root.” Each subroutine gets the name of “branch” instead.

86

Figure 2.20: Example of a genetic programming tree. Source: http://en.wikipedia.
org/wiki/Genetic_programming

The designer of the basic version of a GP algorithm must identify a set of ter-

minals and primitive functions for each branch of the program to be evolved (the

search space), a fitness function to be used in order to evaluate the performance

of any given program (which can be seen as a way to implicitly specify the desired

goal), and a set of conditions for determining how to run and when to stop the

evolutionary process. Both the terminals/sets of primitives and the fitness function

are highly task-dependent. Nonetheless, the identification of the first two elements

is usually a straightforward process, since terminals and primitives are dictated by

the characteristics of the task under examination (e.g. if the goal is to get genetic

programming to automatically program a robot to mop the floor of an empty room,

then the designer has to specify the behavioural possibilities of the robots and the

possible readings coming from its sensors).

In Genetic Programming the evolutionary process runs in a very similar way to

GAs. It starts with a random population of programs for which the individual fitness

values are computed. The fittest individuals are selected (on a probabilistic basis)

for reproduction and modified through the intervention of genetic operators. As

for GAs, the most commonly used operators are mutation and crossover (although

applied in a very different way, since in GP these operators must work with trees

rather than strings of characters). Architecture-altering operations are also com-

monly used. A following generation is so created and the process reiterates itself

until a termination condition is satisfied.

87

Classical examples of this approach can be found in Koza’s work [195, 196], in

which the scientist and his research group presented the results of the evolution of

several LISP [356] programs aimed to tackle a wide range of tasks.

Focusing on the domain of evolutionary computation, for “incremental evolution”

- as stated by Barlow in [27] - we refer to:

”[...] the process of evolving a population on a simple problem and then
using the resulting evolved population as a seed to evolve a solution to a
related problem of greater complexity.”

2.5 Incremental evolution

So far we have introduced the field of Evolutionary Robotics and provided an

overview of its two main components, i.e. neural networks and evolutionary al-

gorithms. According to the “standard” approach to ER, a population is evolved

based on a specific fitness function which evaluates the individuals based on how

good they are with respect to the “main” goal they have to achieve. Sometimes, in

particular when the final goal is complex, evolution algorithms can fail in evolving

the proper solution and get stuck in points of local optima of the fitness landscape.

Incremental evolution is an alternative approach to the traditional “direct evolu-

tion” methodology which aims to simplify the evolution of complex behaviours by

dictating a “path” the evolutionary algorithm should follow.

The inspiration for an incremental approach in artificial evolution clearly derives

from biological evolution. Animal species (and this is particularly true for humans)

have acquired over the time the ability to perform extremely complex tasks. These

abilities were not plucked out of the ether at a certain step along the evolutionary

path, rather they have been progressively built up on top of simpler behaviours used

as prerequisites. If it is true that these simple behaviours have been sometimes quite

evident in their manifestations (e.g. in order to learn how to run, the humans have

gone through a complex series of sequential steps involving standing on their legs,

walking, etc.) however this has not always been the case. Sometimes, in fact, the

underlying capabilities needed as prerequisites for the development of more complex

88

behaviours remained “silent” over the time, i.e. not expressed in form of explicit be-

haviours before abruptly appearing. This is what has been demonstrated by Gould

introducing the concept of “punctuated equilibrium” [142, 143], a phenomenon that

later on has been identified among many other areas outside the biological evolu-

tion domain, such as the introduction of government policies [29], and the diffusion

of technological innovations [221]. Depending on the fitness function used and the

specifications of the problem tackled, both continuous evolution and punctuated

equilibrium dynamics (see for example the classic work by Lindgren [218]) can be

seen as the result of computer-simulated evolutionary processes. Incremental evolu-

tion, by definition, recreates punctuated equilibrium-like dynamics, even though the

same sort of phenomena can emerge from direct evolution, especially when complex

multi-parameter fitness functions are used.

2.5.1 Incremental evolution in autonomous robotics

The idea of using an incremental approach to evolution is very well known in the

autonomous robotics and evolutionary computation fields. Gomez and Miikku-

lainen [140] described the advantages of incremental evolution in 1997, mentioning,

among others, the possibility offered by this approach for evolving behaviours oth-

erwise not obtainable; as well as the better generalisation capabilities exhibited by

controllers designed following this paradigm. But the origin of incremental evolu-

tion can be dated back even further. Rodney Brooks, taking inspiration from his

previous work on behavior-based robotics, was among the firsts to propose an in-

cremental approach to be used within the Genetic Programming domain back in

1991 [52]. This should not be at all surprising when taking into account the fact

that Brook’s subsumption architecture itself [50] could be easily seen as a way to

mimic incremental evolution, building increasingly complex behavioural modules on

top of simpler ones. Recognition must therefore be given to Inman Harvey and his

research group in Sussex for their studies on the SAGA (Species Adaptation GAs)

framework [151]. Thanks to the work of Harvey’s group - that could be considered

the “father” of the incremental approach to evolution in autonomous robotics - a

89

coherent theoretical framework for incremental evolution has been created. This

framework has been used by a significant number of researchers all over the world

as a basis for their works.

During more recent times, Mouret and Doncieux [265] have attempted to bring

order into the field, providing a classification of the possible approaches to incre-

mental evolution in autonomous robotics in four categories: 1) “staged evolution”;

2) “environmental complexification”; 3) “behavioural decomposition”; and 4) “fit-

ness shaping”. Staged evolution employs multiple fitness functions that correspond

to multiple sub-tasks of increasingly difficulty; the population is initially evolved

to perform the simplest task, then the fitness function is modified leading to the

solution of the second task and so on. Environmental complexification is similar to

staged evolution, but the complexity of the task can be modified continuously op-

erating on certain parameters. Behavioural decomposition (also known as modular

evolution) relies on the decomposition of a neural controller into separate task-based

sub-controllers, each of these is evolved independently from the others. An evolu-

tionary algorithm then combines all of these modules into a master neurocontroller.

Finally, fitness shaping uses a weighted sum of multiple evaluation criteria in order

to create a fitness gradient that evolution tries to follow.

As from the above classification, incremental evolution does not necessarily in-

volve a progressive complexification of the controller architecture, although this is

frequently the case especially when a neural network is employed. Utilisation of

this approach is abundant in literature. An example of this is the work by Stanley

and Miikkulainen [355], in which they present the NEAT (NeuroEvolution of Aug-

menting Topologies) method, a framework for evolving neural network topologies

along with synaptic weights. The results they have obtained applying NEAT on a

reinforcement learning task used as benchmark demonstrate how this approach can

outperform those based on fixed neural networks topologies. In Stanley’s case, the

topology of the network changes over time following evolutionary dynamics. But it

is also common that the experimenter decides the topology that the “global” con-

troller must have, manually joining a range of sub-modules dedicated to different

90

functions. Togelius [365] (also reviewed in Tomko & Harvey [368]) provides a further

classification based on the possible ways in which different neural modules could be

incrementally attached to an existing controller. He defines “incremental evolution”

the evolution of a one layer network using multiple fitness functions, “modularised

evolution” the evolution of multiple layers or multiple networks with a single fitness

function, and “layered evolution” the evolution of a multi-layered network using

multiple fitness functions, specific for each layer. On this basis, Tomko and Harvey

have pointed out that it is also of fundamental importance to consider how new

units/modules are connected to the main controller during incremental evolution.

Their findings highlight the detrimental effect generated by the use of random large

connection weights, rather suggesting the linkage of additional neural modules using

connection weights with zero values.

As reviewed by recent research carried out by Petrovic [295, 296], many works

that can be found within the abundant Evolutionary Robotics literature have em-

ployed, to different extents, an incremental approach to evolution. The topics differ

widely in their subject matter and range from: the control of unmanned aerial vehi-

cles [27] to 6-legged robots [109], passing through artificial vision systems [153] and

autonomous learning [371]. Though most of the published works simply justify the

reason for using an evolutionary approach as a consequence of not better specified

“issues” in evolving the desired behaviour through direct evolution. A quantitative

analysis of the advantages coming from the adoption of an incremental approach is

rarely provided. One of the few exceptions to this trend consists in the work carried

out by Walker [385], who draws an accurate comparison between the performances

generated by a direct and an incremental method for a multi-variable symbolic re-

gression problem. Walker interestingly takes into account the full “computational

costs” of both approaches, intended as the number of evaluations of the fitness for-

mula required by the two alternatives. The results he collected demonstrate that

no significant advantages in terms of full computational costs are guaranteed by the

adoption of an incremental approach. Another recently conducted study, leading

to similar evidences, is the one carried out by Christensen and Dorigo [69] compar-

91

ing the performances generated by two popular approaches to incremental evolution

(behavioral decomposition and environmental complexity increase) against the re-

sults obtained through several non-incremental evolutionary algorithms. According

to their results none of the incremental evolutionary strategies perform any better

than the non-incremental methodologies. This stream of criticism seems to also have

had an effect on a fierce supporter of the incremental approach, namely Inman Har-

vey. That in his previously mentioned work states how - according to the analysis

carried out - incremental evolution seems to outperform direct evolution only under

specific conditions.

In conclusion literature presents results supporting both the arguments, with a

recent increase in the number of works that look at the phenomena with a sceptical

eye. Anyway, the impression is that it is still extremely difficult to provide a defini-

tive answer to the dilemma of whether incremental evolution is “better” or not than

direct evolution.

Chapter 3

Aerial Robotics and Intelligent

Control: History and Technologies

Throughout this chapter we will discuss UAVs (Unmanned Aerial Vehicles, often

referred to as Unattended or Unassisted) and MAVs (Micro-unmanned Aerial Vehi-

cles). Instead of the unnecessarily complex (at least for the purposes of this thesis)

classification proposed by the US Department of Defense [374], herein we will differ-

entiate between the two categories based on the size of the platform considered, but

without relying on a strict criterion for distinguishing between MAVs and UAVs. In

general, throughout the following pages, any unmanned aircraft below a four-metres

wingspan will be considered a MAV, intended as a subcategory of the more general

UAVs class. As a remedy to what we have identified as a factor that is lacking in

the literature, we will propose a classification of MAVs in three different categories:

Small, Mini and Nano.

The first section will give a quick introduction to the field of unmanned flight

from an historical perspective, since its beginning up until modern times. This

section offers a military-oriented look to the field of autonomous flight. This focus

is justified due to the fact that, until very recently, the major drive towards research

in unmanned aerial vehicles has come from the armed forces.

The second section focuses on modern UAVs and MAVs. It begins by outlining

the tier classification systems for unmanned aerial vehicles employed by the US Air

Force and by the US Marine Corps, and then discusses the main reasons that have

93

led to a wide adoption of unmanned aerial systems by armies all over the world.

The history of miniature aerial vehicles is traced (a review of the most prominent

examples of MAVs available today is included in the Appendix) and their typical and

potential applications, both from a civilian and a military perspective, are analysed.

The third section focuses on aerial robotics from a more technical point of view.

The basic fixed-wing MAV aerodynamics is introduced, as well as the principal

challenges involved in designing such aircraft working at low Reynolds numbers.

The typical characterisation of robotic MAVs is then introduced, before describing

what autopilot systems are and how they work.

Many different platforms will be presented throughout this chapter. Some rotor-

craft, either 3 or 4-rotor configurations, will be mentioned although the UAVs/MAVs

described herein will be for the most part fixed-wing ones. Rigid and non-rigid air-

ships (see for example Zufferey et al. [410]) will not be covered in this chapter

because - notwithstanding the interesting scientific challenges they involve - they

play a relatively small role with regards to today’s military and civilian needs. For

the same reason, unusual configurations such as flapping-wings aircraft (see for ex-

ample Deng et al. [92], or the recently introduced Festo SmartBird1), aerial vehicles

with inflatable and rigidisable wings [376], and hybrid models (as those able to both

fly, crawl on the ground and swim [249]) will not be taken into account as well,

except in a very marginal way.

3.1 Unmanned flight: a brief history

On 17 December 1903, the Wright brothers, Orville and Wilbur, carried out the

first successful heavier-than-air flight test in human history using a powered vehicle.

Although they were not the first ones to build and fly experimental aircraft, the

Wright brothers were the earliest to invent aircraft controls that made fixed-wing

powered flight possible. This was due to the inter-linked roll-yaw control system,

extensively tested by the Wright brothers on gliders, carefully described in a recent

publication by Padfield and Lawrence [284].

1http://www.festo.com/cms/en_corp/11369.htm

94

Following the Wright brothers’ success, it did not take long for the domain of

unmanned flight to emerge. In reviewing the history of the field, Sullivan [359]

mentions the Kettering Bug flying bomb, developed by Charles Kettering in 1918,

as the first unmanned vehicle flown by the US Army Signal Corps. Kettering’s bug

was a gyroscope-controlled flying machine that would fall to earth and explode after

the propeller turned a preset number of times. All in all similar to an aircraft, this

might also be considered the first missile in military history.

But the Kettering Bug was not an original concept. Four years earlier, in June

1914, Lawrence Sperry2 [85] - together with his assistant/technician Emil Cachin -

carried out a public demonstration of an aircraft whose control surfaces were man-

aged by a rudimentary autopilot system, governed in turn by a gyroscope (a “Sperry

gyroscope”) integrated in the fuselage. The gyroscope was “merely” measuring the

error (angle of deviation) between the desired (stable) attitude of the aircraft and

the current one, making the necessary adjustments via simple mechanical devices.

The demonstration took place in France, during the “Concours de la Securité en

Aéroplane.” Sperry and Cachin made their exhibition as impressive as possible, fly-

ing several times in front of the reviewing stand, sitting on the wings of the plane,

with no one at the cockpit.

Sperry, inventor of this first autopilot system, quickly became extremely pop-

ular, appearing on the front pages of the most important newspapers of the time.

Furthermore, despite what was erroneously reported by Sullivan, his research was

the inspiration behind the creation of the Kettering Bug as well. The first guided

bomb in military history was in fact developed by both Sperry and the automo-

tive inventor Charles Kettering, with external advice provided by James Doolittle.

William Scheck’s essay [336] on the development of the autopilot narrates the full

story in details.

Despite the tremendous success achieved from an engineering perspective, the

world was not ready for large-scale unmanned flight. Aircraft were not yet consid-

ered a method of mass transportation, instead they were viewed as tools of war or

entertainment. No obvious benefits were visible in the use of autopilot systems with

2Son of Elmer A. Sperry, the inventor of the gyrocompass.

95

regard to these two areas. Furthermore, the enthusiastic Lawrence Sperry passed

away in December 1923. Without his leadership and feeling the economical pres-

sure exercised by the governments selling the aircraft leftover of WWI, the Sperry

Gyroscope Company he was governing in conjunction with his father Elmer (that

in the meanwhile managed to develop “universal” autopilot systems thanks to the

widespread introduction of the Deperdussin system [4]) did not survive. As a result,

the research into unmanned flight consequently stagnated for a couple of decades.

Eventually, in the early 1940s, Sperry’s innovations acted as starting points for

the birth of the missile field. Several prototypes, as the above mentioned Sperry-

Kettering Bug, were developed over the years, but was not until the burst of WWII

that they became a common asset in the arsenal of the belligerent armies. The

research on this area took place in Germany in particular, and brought to the ap-

pearance of the “Vergeltungswaffe-1” (also known as V-1), the first missile (the

type of which would be referred to today as a “cruise missile”) to be employed in

wartime. The V-1 (known among the Britons as “doodlebug” or “buzz bomb”,

because of its noise) was soon replaced by the technologically impressive V-2 (also

known as “Aggregat-4”, A4). The V-2 was also the first known human artefact to

achieve sub-orbital spaceflight.

On the Allies side, the only attempt to use unmanned aircraft carried out dur-

ing the second world war was the highly unsuccessful Operation Aphrodite [187].

Operation Aphrodite attempted to use manned vehicles (namely B-17s and PB4Ys

bombers) as unmanned ones. Stripped of their standard equipment and loaded with

several tons of explosive instead, the Allies were planning to use them against for-

tified Axis’ defences, but none of them actually managed to hit their designated

target.

3.1.1 The drives for the UAVs in the military

The rest of the story on unmanned flight, since the end of WWII until modern

times, has been reviewed by Sullivan [359] from an interesting perspective. Rather

than focusing on trends in technical development of pilotless aircraft, Sullivan has

96

identified four main ideas driving the use of unmanned aerial vehicles in the military.

Although recently a strong interest has started to grow within the scientific commu-

nity also, the military field has always been the most significant source of innovation

in pilotless aircraft. Thus, the story of unmanned aerial vehicles is closely linked to

military history.

The four drives identified by Sullivan are:

• force multiplication: a constant drive in military history responds to the “do

more with less” logic. This does not simply mean providing more “power” to

smaller groups, rather accomplishing more with that group than what could

have been done previously;

• strategic bombing : started during the Spanish civil war in 1936-39, the practice

of strategic bombing became widely accepted (and used) during the second

World War, as becoming a standard tactic during every following conflict;

• better intelligence, search and reconnaissance: since the first battle in history

was fought, gathering information on enemy troops and fortifications is consid-

ered a dangerous but extremely important task. The importance of intelligence

further increased over the last few decades, given the nature of modern warfare

scenarios that rarely see two or more conventional armies facing each other on

an open battlefield;

• battlefield of the future: any military planner’s work focuses on imagining “the

next war.” This consideration alone is enough to justify investigations and

financial investments in any sort of cutting edge technology that could be

used for military purposes.

What follows is a list of some more detailed examples related to Sullivan’s points.

Concerning force multiplication, the aforementioned Aphrodite project demon-

strated the need for more precise application of force during WWII. The recognition

of this need indirectly started a stream of investigations along the direction of cruise

missiles, weapons significantly more accurate than air-dropped bombs in hitting en-

emy targets located in difficult to reach positions. More accurate weapons means

97

more weapons and this is where the concept of force multiplication comes into play.

As Davis said [86]:

”[t]he accuracy and invulnerability to enemy countermeasures achieved
[by American researchers] effectively multiplies the number of missiles
we [the US] have now on stands.”

In 1946 (unofficially at first) the US Navy started the development of the AIM-

9 Sidewinder air-to-air missile, a “heat-homing rocket” according to the words of

William B. McLean. The AIM-4 Falcon, designed by the US Air Force, quickly

followed. Time was ready for the introduction of AGM (air-to-ground) missiles, with

AGM-45 Shrike and AGM-65 Maverick being two of the most prominent examples

of the category. The AGM-28 Hound Dog was the first prototype of a cruise missile3

instead. Worried by the improvements in SAM (surface-to-air) counter air missile

technologies exhibited by the Soviet Union (that could have significantly reduced

the impact of a nuclear deterrence mainly based on bombers), American scientists

started to investigate alternative carriers for their nuclear warheads. The solution

that was found, consisting in the usage of cruise missiles, subsequently led to the

appearance of intercontinental ballistic missiles (ICBMs).

The second point raised by Sullivan concerns strategic bombing. This kind of

military operation can be performed nowadays by several different means, employ-

ing both manned or unmanned aircraft bombers, as well as missiles with various

degrees of autonomy. Roughly three families of tools suitable for this purpose can

be identified, each of them with its own advantages and disadvantages: bombers,

cruise missiles and ICBMs. Bombers are the most flexible solution, since they are

flown directly by a human pilot, but at the same time they are the slowest and the

biggest (in terms of size) amongst these tools, thus constituting a relatively easy tar-

get for enemies’ air defences. Among the options that have been discussed, ICBMs

are the most autonomous instrument, as they fly independently from lift-off to tar-

get under their own guidance systems. Their effectiveness is extremely high, but on

the other hand their programming requires time and must be done well in advance

3We define as cruise missile a “SSM surface-to-surface guided missile that carries an explosive
payload and is propelled, usually by a jet engine, towards a land-based or sea-based target.”

98

before the mission they are intended to take part in. Cruise missiles guarantee a

mix of flexibility (provided by the fact they can be fired from mobile platforms) and

effectiveness (in terms of penetration inside the enemy’s airspace,) without excelling

in any of these two dimensions. The X-45 UCAV4, for which the development was

started by Boeing in 1998, is a technological attempt to combine the flexibility of a

manned aircraft with the penetration and range of an ICBM.

Sullivan then introduces among the drives identified the set of tasks constituted

by intelligence, search, and reconnaissance (ISR). Considering that, while not being

dangerous5, collecting intelligence information is an extremely repetitive and boring

task, employing automatic systems (as unmanned aircraft) always seemed to be

a natural way to go. Firebee Q-2A, developed by Ryan Aeronautical, was a jet-

powered, air-launched, remotely piloted and expendable UAV designed to gather

information over hostile areas. Operative since 1951, the Firebee is the most widely

used UAV family in military history. An example of the Firebee’s use is during the

Vietnam War. In this conflict, the Firebee aircraft (the model 147 Lighting Bug

particularly) flew over 3,400 missions. Its design was improved over time, allowing

the aircraft to become increasingly more autonomous in its sorties, not necessarily

depending on the C-130 bombers usually used for the deployment. Some of the

Firebee models also acquired strike capabilities, as the AQM-34 version, operational

since 1976.

This trend has not stopped yet. Aiming to “maintain global awareness” [358], in

1998 the US Air Force took control over the High-Altitude Endurance (HAE) UAV

Advanced Concept Technology Demonstration (ACTD) programme6, resulting in

the development of the Northrop Grumman (the new name for the former Ryan

Aeronautical company) Global Hawk UAV. The Global Hawk, one of the most

advanced UAVs to date, is an extremely interesting aerial platform, since it provides

up to 42 hours of endurance and can operate safely in adverse weather conditions. Its

most prominent competitor in terms of popularity is certainly the General Atomics

4“UCAV” is the acronym for “Unmanned Combat Aerial Vehicle”, i.e. a UAV with combat
capabilities.

5Both in terms of human and political costs. See for example the issues that arose during the
Cuban Missile Crisis.

6http://www.fas.org/spp/military/docops/defense/actd_mp/HAE.htm

99

Predator. Although the two aircraft have demonstrated how they can be jointly used

in a successful way, the Global Hawk, thanks to its significantly superior capabilities

for intelligence operations, has become the default choice for intelligence operations,

while the Predator is quickly evolving into a widely appreciated combat vehicle.

Finally, Sullivan mentions the “battlefield of the future.” As we have seen, UAV

technologies emerged from the research into missiles carried out during the First

World War. At that time, it was thought that “flying bombs” or “aerial torpedoes”

would have been main players in the upcoming warfare scenarios. These develop-

ments did not result in any practical application until much later, though. But they

eventually did. The same applies to unmanned aircraft. Particularly during the

Vietnam War, they demonstrated their efficiency in penetrating dense enemy air

defences, but it took long before they became accepted as a standard intelligence/-

combat tool. Now, thanks to the constant technological march towards smaller

components, the research is focused on new classes of miniature UAVs, which is the

domain we refer to across this thesis.

3.2 UAVs and MAVs

On the basis of the brief historical background traced in the previous section, we

now jump forward to modern times and focus on todays’ UAVs and MAVs, as well

as their most typical application areas.

3.2.1 Unmanned Aerial Vehicles (UAVs)

According to a widely accepted definition published in the US Department of Defence

Dictionary of Military and Associated Terms [374], a UAV can be considered:

“A powered aerial vehicle that does not carry a human operator, uses
aerodynamic forces to provide vehicle lift, can fly autonomously or be
piloted remotely, can be expendable or recoverable [...]”

Since the above definition might include expendable devices also, many authors

have decided to adopt slightly different denotations in order to distinguish between

aircraft and missiles. Sullivan [359], for example, uses the acronym UAV to refer

100

to “any reusable air vehicle that does not have a pilot on board,” while defining a

missile as a “one-time use vehicle with no pilot on board.” Beside disputes about the

definitions, it is a fact that missiles and unmanned aircraft have several things in

common, as their shared development history demonstrates.

The Tier systems

According to the military point of view, future UAV systems are intended to be em-

ployed alongside soldiers not as mere tools in their hands, but rather as autonomous

systems capable of performing operations without human supervision. Although,

at the moment UAVs are integrated with the other components of an armed force.

The integration scheme between these various elements is described in terms of a

“Tier” system, and it is used by military planners to designate the various individual

aircraft elements in an overall usage plan for integrated operations. The Tiers do

not refer to specific models of aircraft, rather to roles for which various models are

intended. The U.S. Air Force and the U.S. Marine Corps each have their own tier

classification system. Unfortunately these two systems are not integrated.

For what concerns the tier system used by the USAF, it relies on three broad

categories of Tier I, Tier II or Tier III, with sub-categories such as Tier II Plus

and Tier III Minus [403]. Tier I refers to low altitude and long endurance vehicles,

Tier II to medium altitude and long endurance (MALE) vehicles, Tier II+ to high

altitude and long endurance (HALE) “conventional” UAVs, Tier III- to high altitude

and long endurance low-observable aerial systems. Lax and Sutherland [205] have

elaborated on this UAVs categorisation also focusing on the general capabilities of

control range and speed, thus producing the resume reproduced herein (see Table 3.1,

which has been further modified in this place).

The US Marine Corps (USMC) tier system [271] is also divided into three classes,

mainly in function of: the kind of missions the UAV can take part in, who should

assume the control over it, what the operating radius and the payload supported

are (see Table 3.2).

101

Table 3.1: USAF UAVs tier classification system, after Lax & Sutherland’s modifi-
cations [205]

Category Designation
Max
Alt

Radius Speed Endurance Examples

Tier I
Low alti-
tude, long
endurance

Up to
15,000
ft

Up to
250 km

60-100
kts

5-24 hrs

RQ-
2Pioneer,
Searcher,
GNAT 750

Tier II

Medium al-
titude, long
endurance
(MALE)

3,000
ft to
15,000
ft

Up to
900 km

70 kts
Over 24
hrs

MQ-1
Predator,
MQ-9
Reaper

Tier II
Plus

High alti-
tude, (long)
endurance
(HAE, or
HALE)

Up to
65,000
ft

Up to
5,000
km

350
kts

Up to 42
hrs

Global
Hawk

Tier III
Minus

High alti-
tude, medium
endurance,
stealth and
low-observable
characteristics

45,000-
65,000
ft max

Up to
800 km

300
kts

Up to 12
hrs

RQ-3
DarkStar

The advantages of UAVs compared to manned aircraft

From a more general point of view - and still specifically focusing on their usage in

the military - UAVs can also be classified in three wider families: reconnaissance,

combat, and target (see Figure 3.1, re-elaborated by Lax and Sutherland [205]).

Of course, UAVs are not limited to these three kinds of operations only. Midway

between the civilian and military fields we have logistics, which can be intended used

in both the domains. Furthermore, additional applications are possible within the

civilian domain, as for example those related to scientific research. We will get back

to military and civilian applications of unmanned aerial vehicles in Section 3.2.3.

Keeping for the moment our focus on a military perspective, the increasing in-

terest shown by various stakeholders towards autonomous aircraft systems is not

only justified by economical considerations, although the use of autonomous aircraft

instead of traditional manned airplanes would allow institutions to save significant

102

Table 3.2: USMC UAVs tier classification system

Category User Owning unit Missions Radius Payloads

Tier I
Pilot, Com-
mand, Battal-
ion

Battalion SR
2.7
NM

EO/IR/LL

Tier II

Regiment, Bat-
talion, Marine
Expeditionary
Unit

Regiment,
Marine Ex-
peditionary
Unit

STAR, Bat-
tle Damage
Assessment

27 NM EO/IR/LRF

Tier III

Marine Ex-
peditionary
Unit, Marine
Expeditionary
Brigate, Divi-
sion, Marine
Expeditionary
Force

Wing

ISR, Com-
munication
relay, Pa-
trolling/Law
Enforce-
ment, Bat-
tle Damage
Assessment

110-
240
NM

EO/IR/LD,
Commu-
nication
relay

amounts of money that would normally be assigned to the training/maintaining a

crew of pilots. Several reasons for this trend can also be found in what has been

pointed out by Cambone et al. [62], i.e. that human elements are, generally speak-

ing, the limiting factors in performing certain airborne roles. The authors justify

this apparently strong view mentioning three examples of applications belonging to

the “dull, dirty or dangerous” categories. In all of those it is clear how autonomous

systems could perform significantly better than manned setups for a wide variety of

tasks, both in terms of reliability and accuracy.

The dull factor does not need careful explanation. As we have been taught by

industrial history (and, maybe more effectively, by Charlie Chaplin’s film “Modern

Times”) machines are better than humans in performing repetitive and boring tasks

without sacrificing effectiveness over time. In 1999, during NATO’s intervention

in Kosovo, it was not unusual for crews of manned bombers to perform 30-hour

roundtrip missions from Missouri to Serbia. This clearly had a strong impact on

the operational proficiency of the pilots, making it difficult for the US to perform

all the operations they wanted to do (and that could have been done if no human

beings were “inside the loop”).

The dirty factor can be easily understood by reporting a story that happened

103

Figure 3.1: Classification of UAVs based on their role. Source: [205]

very recently. During the accident at the Japanese nuclear plant in Fukushima,

Global Hawk and U-2 unmanned aircraft were sent over the damaged reactors to

monitor the situation7. Since one of the first solutions attempted to cool down the

damaged reactor (consisting in dropping water from helicopters) failed because of

the high levels of radiation threatened the pilots’ lives (dirty scenario), one of the

alternative hypotheses elaborated involved the usage of unmanned aerial vehicles

instead.

Finally, the dangerous factor is related to risks that can be both human and

political, but might also be economical. Intelligence operations performed by aircraft

have always been extremely risky. As an example, one may just recall that during

Vietnam and Israeli-Arab conflicts, the highest loss rate for aircrew and aircraft

came from surveillance missions. Political costs are immediately obvious instead

when aircrew are captured by the security forces of third-party countries, and are

even higher when these aircrew are not involved in “off the books” operations (as it

is often the case). To see the possible economical savings offered by the employment

of unmanned aircraft it is necessary to look at the entire “life-cycle” that brings an

aircraft to the air for a mission. First of all, the crews of manned aircraft must be

trained for years before they become operational, with all the associated costs. These

7http://www.nytimes.com/2011/03/19/world/asia/19japan.html?_r=
1&pagewanted=all

104

costs (despite the fact that the UAV systems commonly used nowadays do not have

a 100% autonomy level thus requiring - remote - pilots), are significantly minor for

unmanned vehicles. Furthermore the technology behind unmanned aerial vehicles

has costs that are not comparable anymore to those required for the development

and the maintenance of a “traditional” manned aircraft, and instead are significantly

lower. From a mere economical point of view, then, the loss of a manned aircraft

and the associated pilots can be considered incomparably more costly than the loss

of a UAV. However, there seems nonetheless to exist an interesting paradox between

the employment of increasingly cheaper technologies and the fact that most of the

modern UAVs are designed to be recoverable (rather than expendable devices as

for example the first Firebee flown over Vietnam were). Of course, less expensive

designs mean that budget money could be saved and allocated elsewhere, globally

improving the financial scenario of the military institution adopting unmanned aerial

vehicles. On the other side, the focus on recoverable rather than expendable UAVs

risks to deny a proper solution to the “dangerous” factor highlighted by Cambone.

If UAVs, whatever the reason might be, can not be considered expendable platforms,

then their application range can get very restricted and more or less similar to that

typical of manned aircraft. Stated in different words, the goal of not losing human

lives (one of the strongest reasons behind UAVs adoption) translates into not losing

aircraft, thus limiting the advantages of unmanned systems.

Despite the fact that the current effectiveness of strategic air power is sometimes

debatable, military experts agree on the fact that air dominance will still be a crucial

factor in the near future. Air forces can not win a war by themselves. The recent

Gulf, Kosovo, and Libyan conflicts have clearly shown how air power can make

it extremely easy for ground forces to successfully annihilate the enemy, though

it is not capable of doing everything on its own. Rather than being a point for

undermining the role of air forces, in the eyes of the military leaders, this seems to

be an additional reason to predict that air power will not go out of fashion anytime

soon. UAVs - attractive because of their capability of keeping combat casualties low

and overcoming many human limitations - will definitely be part of future wars.

105

Ghosh, in a careful analysis on the potential integration of UAV elements into

the Indian Air Forces [134], elaborated many interesting additional considerations

about military applications of unmanned aerial vehicles. First of all, the researcher

stressed how the advantages provided by UAVs are not in terms of reduced loss

rates only but - extending the traditional “dull, dirty and dangerous” factors - also

involved the major overcoming of human limitations in performing air manoeuvres

(as G crunching ones) and affect in a positive way the aircraft designs (not being

centred anymore on the safety of the pilot). Despite this, according to Ghosh:

“[...] it must be understood that UAVs are not a panacea. Some missions
can benefit by the use of UAVs but some others have to be left to manned
flights. It is for the air force to determine the correct mix of manned and
unmanned aircraft in future battle scenarios.”

Apart from the considerations above, that so far have lead to a wide adoption of

UAVs by all the major military forces all over the world, unmanned aerial systems

are subject to a continuous ongoing development. What the air power protagonists

are looking for in future UAVs are the following qualities:

• endurance: future UAVs must have far greater endurance than manned air-

craft, because there is no question of crew fatigue involved. This would al-

low persistent surveillance over specific territories and continuous deterrence.

Since longer shifts imply less aircraft needed, this would lead to a significant

reduction of costs for monitoring tasks;

• wide range of operating abilities : UAVs should be able to smoothly perform

combat tasks, this includes strategic bombings and dogfights. They should

also be able to operate over contaminated areas (dirty scenarios) due to the

increasing spread of chemical/biological weapons. Furthermore, they could be

used, as the need arises, in a provocative role8;

• high degree of autonomy : as they become simpler and easier to operate than

manned counterparts due to technological improvements (although this view

8This point reminds the operations carried out by Hezbollah in 2004 and 2005, when they
invaded the Israeli airspace using a Mirsad-1 UAV. Though this can be seen as a demonstrative
rather than merely provocative act, even if Hezbollah claimed that was a retaliation (http://
news.bbc.co.uk/1/hi/world/middle_east/4434505.stm).

106

has been challenged in [235]), the costs associated with the training of operat-

ing crews are significantly lower for remote controlled UAVs. Further progress

on this area is expected (and desirable) in the near future;

• quick reaction times : in order to widen the range of operative applications,

future UAVs must improve in terms of responsiveness (to reduce their vulner-

ability and being more proficient in both dogfights and operations behind the

enemy lines), in their ability to operate a multitude of weapons, and in the

processing of information gathered by multiple onboard and remote sensors.

Modern UAV systems

The UAV systems developed over the last 15 years have been presented in sev-

eral publications. Among those, one of the first is the review made by Howard &

Kaminer [170] in 1995. A more recent, extensive and detailed gallery can be found

instead in the “2005-2030 Unmanned Aircraft Systems Roadmap” by Cambone et

al. [62], where the UAVs (or UASs, according to the terminology used by the au-

thors) systems available at the time their research was carried out are carefully

described.

3.2.2 Micro-unmanned Aerial Vehicles (MAVs)

Micro-unmanned Aerial/Air Vehicles (MAVs, often defined as MUAVs as well) are

in their very essence miniature (in terms of size and weight) aerial platforms. Inter-

estingly enough, their history followed a somewhat different path than the one that

has characterised manned aviation.

The origins

In a recent publication, Mueller [267] has outlined the history of micro air vehicles.

A history that can be traced back to the early 20th century and more specifically to

the development of the first small radio-controlled model airplanes. According to the

author, the technology and experience provided by the model airplane community

(dating as far back as during the 19th century) served as starting point for the design

107

of today’s MAVs. Moving from the earliest models, rubber-powered or gliders, three

important technological innovations progressively made possible the development

of powered radio control models: 1) small internal combustion engines (later on

replaced by batteries); 2) appropriate sized radio receivers and transmitters; 3)

actuators to move the airplane control surfaces.

The first reported flight of a RC airplane (a glider with remote rudder control)

concerns the exhibition organised by Alfred Lippitsch and Egon Sykora, both from

Dresden, Germany, during a competition held in Rohen on May 31, 1936. Later on

the same year, Walter and William Good developed a rudder control system and

managed to get it working on a gas powered RC model. It took over 20 years, until

June 1957, before the first electric powered RC model made its first (recorded) ap-

pearance, which happened thanks to the efforts of British Colonel H.J. Taplin. Later

on, because of the introduction of nickel-cadmium (Ni-Cd) batteries and small cobalt

type electric motors, electric propulsion became the standard for RC aircraft9 [2].

The United Kingdom, through the work carried out by the newborn RAE (Royal

Aircraft Establishment), was also involved in the development of multi-channel pro-

portional radio control, successfully demonstrated in 1952.

Although the improvement of radio-control equipment continued relentlessly, se-

rious interest in the design of small UAVs began in the U.S. during the 1970s, with

the NRL (Naval Research Laboratory’s) Vehicle Research Section actively involved

in demonstrating the feasibility of a non-recoverable MAV for electronic warfare

missions. The investigations eventually resulted in the development of the LODED

(Long Durance Expendable Decoy) MAV10, a 1.24m long and with a 1.73m wingspan

aerial platform. Despite the disappointing results obtained during the testing of the

LODED suggested that further knowledge was required before “useful” MAVs could

be developed, this platform proved invaluable as a research tool for identifying the

limitations in the technologies then available for unmanned flight and served as a

basis for the later development of MAVs such as LAURA [115], SENDER [114],

MITE [186], and Dragon Eye [116].

9Although it is still possible today to buy off-the-shelf RC models with alternative propeller
systems.

10http://www.designation-systems.net/dusrm/app4/loded.html

108

In December 1992, in the light of recent innovations in micro-technologies (as

micro-mechanical systems and micro-electronic components) DARPA decided that

time had come for a second round of serious investigations. In collaboration with

RAND Corporation a feasibility study was carried out exploring the possibility of

creating a very small, potentially with only 1cm wingspan and 1g mass, MAV plat-

form [172]. Although such a technological extreme has not been reached yet this

event marked the beginning of a flourishing series of MAVs appearing on the scene

before the end of the century. Examples of these platforms are the MITE2, char-

acterised by its dual motor design (for a more detailed analysis of MITE2 and its

successors see [6]), and the very successful Black Widow [145] manufactured by

AeroVironment (see Figure 3.2(a) and 3.2(b)).

(a) (b)

Figure 3.2: (a) NRL MITE2; (b) AeroVironment Black Widow. Sources:
(a) http://www.designation-systems.net/dusrm/app4/mite.html; (b) http://www.

avinc.com/uas/adc/black_widow/

The twenty-first century brought many new examples of MAVs to the air. We

provide a review of the most prominent examples in appendix A.

Classification

If it is true that distinguishing between a “traditional” aircraft and an unmanned

one is often quite a straightforward task, it is significantly more challenging to trace

a clear demarcation line between UAVs and MAVs and, within MAVs, between

“small”, “mini”, “micro”, “nano”, or “palm-sized” vehicles as they are often re-

ferred to across the literature. No researchers, as far as the knowledge of the author

goes, have provided a clear and easy-to-use classification system yet and most of

109

the researchers and firms involved in MAVs design seem to adopt their own (flexi-

ble and malleable) definitions. This point has also been highlighted by Mueller &

DeLaurier [268]:

“Although the definition of small UAVs is arbitrary, vehicles with wing
spans less than 6 meters and masses less than 25kg are usually considered
to be in this category.”

The above one is obviously a very generic definition, which could be harmlessly

adopted for the purposes of this thesis. Though this would not really be helpful

in classifying modern MAVs, as all the examples shown in the next pages, despite

the significant differences among them, would be classified as belonging to the same

category according to the criterion above.

Herein we propose therefore a classification of MAVs in three families, based upon

size (in terms of wingspan) and take-off weight as done by Mueller & DeLaurier,

but slightly more detailed and restrictive:

• Small (S-UAV): wingspan less than 4m, mass less than 26kg;

• Mini (M-UAV): wingspan less than 1.5m, mass less than 3.6kg;

• Nano (N-UAV): palm-sized (wingspan less than 0.4m), mass less than 0.5kg.

Although not particularly sophisticated and built around the already existent

small UAV models rather than on theoretical basis, the biggest advantage provided

by this classification system consists in creating non-ambiguous acronyms, as well

as delineating clear boundaries between the different categories. In the rest of this

thesis, we will stick to the classification method outlined above, referring to MAVs

as the UAVs sub-category including any aircraft capable of autonomous behaviours

having a wingspan less than or equal than 4m and a mass lesser or equal than 26kg.

Figure 3.3 graphically displays the boundaries between the above categories

(Small, Mini, and Micro UAVs). The circles represent a series of popular Minia-

ture UAV platforms reviewed in the appendix.

Given their handiness, flexibility and the relatively small monetary investment

needed to build or acquire platforms belonging to this category, interest in the design

110

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3
x 10

4

Wingspan (cm)

T
a

k
e

o
ff

 w
e

ig
h

t
(g

)

Classification of miniature UAVs within the categories of Nano, Mini and Small UAVs

Nano UAVs (N−UAVs)

Mini UAVs (M−UAVs)

Small UAVs (S−UAVs)

Figure 3.3: Classification of the miniature UAVs reviewed in the appendix, with the
three main categories identified highlighted in different colours

and development of small-unmanned air vehicles has increased dramatically in the

last twenty-five years [267]. Nowadays MAVs are a quite popular research tool among

universities and research centres all over the world, as well as a useful instrument for

tasks such as aerial photography in the civilian domain and intelligence gathering

in military scenarios.

3.2.3 Applications

Applications of UAVs to military and civilian domains have been reviewed by many

authors, as for example in [60, 61, 105, 93]. Since unmanned aerial robots, although

not new as a concept, only recently have become an affordable tool from an economic

point of view, new applications of this technology are appearing day after day. This

section illustrates some of the most significant ones developed so far. At the same

time, it examines the role UAVs play in terms of modern warfare needs and how

they can also be extremely useful in civilian environments.

111

Military applications

The most common reasons that have lead to the widespread usage of UAVs and

MAVs across armies all over the world have already been covered in previous pages.

Here we focus instead on describing some practical applications in order to clarify

some of the points introduced above.

Barbara Fletcher, at the Space and Naval Warfare Systems Center Pacific at

San Diego (SSC-SD11), has elaborated a survey on the role autonomous vehicles

can play within modern network-centric battlespaces [110]. The term “net-centric

battlespace” is used to identify today’s battlespaces, encompassing air, land and sea

domains in addition to requiring full sensor coverage and communication across all

boundaries. The resulting network of sensors, platforms and communication modes

results in a net-centric grid. According to Fletcher, autonomous vehicles are par-

ticularly well suited for being applied in the context of C4ISR (Command, Control,

Communications, Computers, Intelligence, Surveillance and Reconnaissance) mis-

sions. A flow diagram that shows what a typical C4ISR operation consists of can

be seen in Figure 3.4.

Figure 3.4: Typical action flow for a C4ISR mission. Source: [110]

At the beginning of the cycle is data collection, usually carried out by sensors

deployed at the sites of interest, or gathered in alternative ways. Next, the data

must be communicated to a central location where it is integrated with other data

11http://www.nosc.mil/robots/

112

(data fusion) and interpreted within the context of the situation. Based on such

interpretation, decisions are made as to the appropriate actions to be taken. Finally,

the action is implemented, often requiring verification, which in turn is provided by

sensors, restarting the cycle.

Autonomous vehicles can be used at various stages during this process, and UAVs

are no exception. The most natural use of unmanned aerial vehicles involves collect-

ing data. First of all, UAVs can be used both to deploy data sensors over areas of

interest. Furthermore, UAVs can work as sensor platforms themselves, thanks to the

amount of sensors (cameras, etc.) that they can carry onboard. Other than that,

one of the emerging roles for autonomous systems is that of communication relays

within the net-centric grid. As with the sensor platform role, use of autonomous

vehicles confers multiple advantages. Among these, their extensive reach permits

timely communication with remote sites without undue exposure of platforms. Fi-

nally, after the data has been collected, communicated to the central nodes, and

processed, it is often desirable to be able to act upon it in a timely and appropriate

fashion. Autonomous vehicles can be also implementers of the actions elaborated

at the end of the cycle. UAVs with strike capabilities (as for example the Predator

and the Reaper, to just mention two very popular combat unmanned aircraft) can

directly perform a wide array of typical military actions, including firing on a target,

intercepting a target, retrieving an object, or neutralising a threat of different kind.

During the last 30 years SSC-SD has developed three large projects involving

UAVs as sensor platforms: Airborne Remotely Operated Device [248] (AROD12,

1982-88), Multipurpose Security and Surveillance Mission Platform [272] (MSSMP13,

1992-98), and Autonomous UAVs Mission System [270] (AUMS14, 2002-03).

The AROD project led to the development of two remote-controlled ducted fan

Vertical-Take-Off-and-Landing (VTOL) aerial vehicles for short-range aerial surveil-

lance. The first-generation AROD vehicle was electrically powered, with power sup-

plied through a tether from the ground station, and was easily small enough to be

carried by one person. The second-generation vehicles were much larger and pow-

12http://www.nosc.mil/robots/air/arod/arod.html
13http://www.nosc.mil/robots/air/amgsss/mssmp.html
14http://www.nosc.mil/robots/air/aums/aums.html

113

ered by a 26-horsepower, two-stroke gasoline engine, driving a single lifting propeller.

Servo driven vanes located at the bottom of AROD controlled vehicle attitude, al-

lowing hover, multi-directional translation, and rotation about its vertical axis. An

automatic control system helped maintain vehicle stability. A optic fibre cable pro-

vided a communication link to a small Ground Control Unit, with a radio link as

backup. A 5 km spool of optical fibre was carried aboard AROD to support a 2km

round trip or 5km one-way mission.

An improvement over the AROD vehicles came few years later with the second

project developed at SSC-SD. The Multipurpose Security and Surveillance Mission

Platform (MSSMP) system is a distributed network of remote sensors mounted on

VTOL mobility platforms plus portable control stations. This sensor package can

work either as a portable stand-alone unit or from specifically designed air-mobile

platforms.

According to the words of their creators15, MSSMP was designed to:

“[...] provide a rapidly deployable, extended-range surveillance capability
for a variety of operations and missions, including: fire control, force
protection, tactical security, support to counter-drug and border patrol
operations, signal/communications relays, detection and assessment of
barriers (i.e. mine fields, tank traps), remote assessment of suspected
contaminated areas (i.e. chemical, biological, and nuclear), and even
resupply of small quantities of critical items.”

Finally, the AUMS project was intended for the investigation of technologies for

automated launching, landing, refuelling, and rearming of small VTOL air vehicles.

The platform used for the experiments was an Allied Aerospace iSTAR UAV, com-

bined with an unmanned ground vehicle used as a transport carrier and to facilitate

take-off and landing/recovery operations.

Somewhat related to the second point highlighted by Fletcher (autonomous vehi-

cles as communication relays), UAVs, and particularly small-size models, can also be

used to create communication networks in areas struck by natural disaster in order

to assist with information exchange among the rescue operators. This possibility

has been investigated by Burdakov and colleagues [56] as well as systematically ex-

15http://www.nosc.mil/robots/air/amgsss/mssmp.html

114

plored within the SMAVNET project16 [158, 159], ran at the EPFL in Lausanne,

Switzerland.

The third role for UAVs that Fletcher has pointed out concerns autonomous

vehicles used as action implementers. The Israeli Air Force was the first military

corp that acknowledged the use of an unmanned aerial vehicle (allegedly a IAI Harpy

UAV) for a combat operation. That happened in 2006 at the Masna checkpoint in

Bekaa valley, during the war against Hezbollah in Lebanon17. Many UAV platforms

have been upgraded during the last few years to be able to carry warheads and

bombs, but their role as implementers is not limited to unloading bombs and missiles

on specific targets. As reviewed in a more general way by Ghosh [134] (although

discussed in terms of “operational missions”), the range of actions that could be

implemented by unmanned (combat) aerial vehicles includes18:

• attacking fixed targets : UCAVs could be employed to attack high value heavily

defended fixed enemy targets, without exposing men to potentially unaccept-

able losses;

• attacking moving targets : missions as interdiction, strategic attacks and close

air support typically involve moving targets. UCAVs might be helpful in deal-

ing with these situations as they are capable of loitering for a long time (at high

or low altitudes) as they monitor the target in order to predict its movements

and identify the right moment in which to attack. Target acquisition using a

fixed-wing MAV is a subject investigated by Quigley and colleagues [303];

• jamming : when penetrating airspaces protected by radars triggering quick

reaction surface-to-air missiles (QRSAMs), it is extremely important to protect

the attacking vehicles. Nowadays this is frequently done via “jamming”, i.e.

intentionally emitting radio signals to interfere with the operation of a radar by

saturating its receiver with noise or false information. This operation can be

16http://lis.epfl.ch/?content=research/projects/SwarmingMAVs/
17http://www.worldtribune.com/worldtribune/WTARC/2006/me_israel_08_02.

html
18Ghosh also included surveillance/reconnaissance, and UAVs as communication nodes among

these missions. They have not been included in the following list as we have already discussed
these two topics earlier.

115

carried out either by individual fighters/bombers, or by appositely equipped

UAVs. Thanks to their endurance, a single UAV might support several strikes;

• suppression of enemy air defence (SEAD): UAVs could also used as receivers

in the context of SEAD missions aimed at acquiring air dominance. Loitering

over the enemy air space, the unmanned vehicles might be able to pick up

emitter data generated by enemy’s counter-air defences and pass it to the

SEAD network. This data can then be interpreted in order to accurately drive

cruise missiles or following bombers missions to neutralise the threat. As the

recent NATO intervention in Libya has demonstrated, SEAD operations are

frequently the first stage of any large-scale military operation;

• air-to-air combat : the dogfight has traditionally been restricted due to hu-

man and technological limitations. The human limitation is because pilots

can sustain certain levels of “G” force for a limited period of time only. The

technological limitation arises because several improvements have been made

over the years to stretch this limit as far possible. Without humans piloting

the aircraft, UCAVs can be designed to reach degrees of manoeuvrability much

higher than those offered by manned aircraft. High “G” and high-speed in-

terceptions would therefore be a definite possibility for UCAVs, while playing

both offensive and defensive roles.

Despite the “active” roles that UAVs and UCAVs have played and certainly will

be playing in the future, they remain an extraordinary means of information gather-

ing (intelligence). This is not an easy task at all in most of the modern and warmest

warfare scenarios, where a regular army typically face insurgent forces not organised

in a traditional military way. Valpolini [377] has recently published an interesting

survey about the UAV usage in Afghanistan, specifically focusing on the difficulties

in collecting (and understanding) intelligence information during an asymmetrical

conflict. Maintaining situation awareness during crisis situations and performing

early detection of security threats is instead the central topic in the work by Freed

and colleagues [122]. According to their point of view UAVs offer tremendous po-

tential as ISR (Intelligence, Surveillance and Reconnaissance) platforms. With this

116

perspective in mind, the Aeroflightdynamics Directorate (AFDD) of the US Army

Research, Development, and Engineering Command, in a joint collaboration with

NASA, has developed the Autonomous Rotorcraft Project (ARP). Using a Yamaha

RMAX helicopter outfit with a Crossbow IMU, a 900 MHz radio modem, a PC104+

flight computer, a PCI video computer, a sonar, other than differential GPS, vibra-

tion and weight-on-wheels sensors. The consortium has investigated topics related

to autonomous surveillance such as active/passive obstacle sensing and mapping,

route planning around obstacle (i.e. obstacle avoidance), and safe landing area de-

termination (relying on an interesting technology based on the JPL Safe Landing

Area Determination, SLAD, algorithm [363]).

Monitoring crisis conditions has also been the central research topic for the Navy

Research Laboratory (NRL) during the development of the FINDER (Flight Inserted

Detector Expendable for Reconnaissance) UAV. The aim of the project, commis-

sioned by the US Defense Threat Reduction Agency (DTRA), was to produce a

small aerial platform capable of determining the presence of chemical agents in the

air following an attack on a Weapons of Mass Destruction (WMD) facility19. The

FINDER is not capable of autonomous take-off, thus requiring a UAV to be de-

ployed. Extensive tests have been performed using a specially modified version of

the Predator as carrier. The Predator transports two FINDER UAVs on its wing

pylons and then releases them to descend to low level and collect air samples. The

two “explorers” gather meteorological and chemical data and broadcast it back to

the Predator Ground Control Station in order to make it immediately available to

the human decision-makers.

So far in this section we have discussed the typical applications in the military

field of UAVs. MAVs are also interesting from this perspective, although not so

many analyses have been carried out so far on their potential roles. Some general

and high-level considerations can be found in [145, 225, 302, 303, 326]. One of the few

studies that specifically deals with the role potentially playable by miniature aerial

vehicles from a military perspective (specifically on the roles they might assume

19http://www.nrl.navy.mil/research/nrl-review/2003/
simulation-computing-modeling/cross/

117

in the context of counter-terrorism within the Singapore Armed Forces) is the one

published by Chew [67]. The subject will be covered in more detail later on, while

describing the potential of the work that has been carried out for this thesis.

Civilian applications

Outside of the military domain, civilian applications of UAVs have touched several

different areas.

Since providing timely information on highway traffic conditions for use by a

traffic management centre (TMC) is a major function of modern intelligent trans-

portation systems (ITS) this domain has been helped in many different areas by

the employment of both UAVs and MAVs. Unmanned aerial vehicles seem to be

a natural choice for these sorts of tasks, as satellites available to civilian applica-

tions are expensive, have cloud cover restrictions, and cannot provide the temporal

and spatial resolution needed for precise traffic and parking analysis. An extensive

review of such applications can be found in Anuj Puri’s work [300]. Noteworthy

amongst them is the ATSS (Airborne Traffic Surveillance System) project20 [203],

ran by the University of Florida in collaboration with the Florida Department of

Transportation (FDOT), the Tallahassee Commercial Airport and the University

of North Florida Road Weather Information System (RWIS) Research Team. Us-

ing an Aerosonde UAV the team intended to collect real-time data about traffic on

highways and interurban roads and make this information immediately available to

human operators through wireless data transmission.

The Aerosonde UAV was first introduced in 1995 for weather surveillance appli-

cations21. The plane has a 2.90m wingspan, a length of 1.90m, and weighs slightly

more than 13kg. It can fly continuously for up to 32 hours, with on-board strobe

lights that make it visible at night-time. The Aerosonde employs a Sony XC555

colour video camera and a pair of Vaisala RSS901 weather sondes.

A proof of concept was elaborated by using two microwave towers managed by

the FDOT. The UAV was made to fly over a highway - midway between the two

20http://www.list.ufl.edu/uav/project.htm
21It is allegedly the first UAV to have flown over the Atlantic Ocean [240].

118

towers - transmitting in real-time to the base stations the video signal recorded

by the onboard camera. The two base stations were equipped with video encoder

devices that were used to encode the visual stream and transmit it over the FDOT

computer network. This information was in turn passed to the State Emergency

Operations Center (SEOC), where an automatic system was in charge of identifying

the higher quality video and displaying it to the human operators.

Another interesting project is WITAS (Wallenberg Laboratory for Information

Technology and Autonomous Systems) [94, 144], coordinated by Linkoping Univer-

sity that ran between 1997 and 2005. The research consortium, in collaboration with

Scandicraft Systems, developed the APID Mk III, a 3.63 meter long rotorcraft with

a body manufactured using carbon fibre/kevlar sandwich material. The APID Mk

III can support a payload of up to 20kg (including fuel) and it is endowed with on-

board sensors including a radar altimeter, an IR altimeter, a barometer, a compass,

and a differential GPS receiver. A 1W radio link is for two-way communication with

a ground station. Information from all sensors can be received from the platform

and control commands can be sent back.

The core of the project revolves around the vision system installed on the UAV.

Digital video cameras are contained in a housing consisting of gyro-stabilised pan-

tilt gimbals. Panning, tilt and camera zoom can be controlled from the ground via

a separate radio link, or on-board using a specially designed interface. The UAV is

intended to navigate autonomously at different altitudes to use its vision system to

locate, identify, track and monitor different vehicle types.

Coifman and colleagues [75], at the Ohio State University, have carried out field

experiments using a MLB BAT III Mini-UAV22. The experimentations involved the

monitoring of freeway conditions (for the purpose of observing flows, speeds, den-

sities, off-ramp weaving, turning movements, and vehicle trajectories), intersection

movements (with a specific focus on analysing the length of the queues) and network

paths (looking for flows, speeds, densities, and vehicle trajectories), and parking lots

(to assess their utilisation).

Another aerial platform for traffic surveillance has been developed at the Georgia

22http://spyplanes.com/pdf_new/bat3_brochure.pdf

119

Tech Research Institute, in collaboration with the Georgia Department of Trans-

portation and the Federal Highway Administration’s Priority Technology Program.

Lead by Robert C. Michelson, the program led to the creation of a VTOL traf-

fic surveillance drone capable of relaying live video and two-way audio from the

site of traffic incidents, back into the state’s Advanced Traffic Management System

(ATMS). A military version of this UAV, named Dragon Stalker, was subsequently

developed.

The AINS Center for Collaborative Control of Unmanned Vehicles at the Uni-

versity of Berkeley has worked on several topics related to traffic control. Frew

et al. [126], for example, have developed a computer vision system that enables a

UAV to fly autonomously following a road below it in a more accurate way than if

only using GPS information. The platform used for the experiments was a modified

Sig Rascal R/C plane. Lee et al. [208] have focused instead on the development of

path-planning strategies for the tracking of a ground vehicle.

The COMETS project23, coordinated by the Association of Research and In-

dustrial Co-operation of Andalucia (AICIA), aimed to design and implement a dis-

tributed control system for cooperative detection and monitoring using heteroge-

neous UAVs. Both airships and rotary-wing UAVs have been employed for this

purpose. Although the project eventually focused mainly on the detection of forest

fires as an application of the research carried out by the consortium, among the pos-

sible applicative scenarios traffic surveillance was carefully examined. Identified as

the most challenging tasks were: to monitor traffic situations; to identify and track

individual vehicles; to identify episodic behaviour of both individual and groups of

vehicles; to gather data pertaining to road network use and abuse; to provide assis-

tance to emergency services; to serve as a mobile sensory platform with real-time

information gathering and processing capabilities.

In addition to those listed above, McCornack et al. [238] have elaborated a de-

tailed report about the experiments carried out by the Washington State Transporta-

tion Center (TRAC), while Harman et al. [149], at the Bridgewater State College,

have analysed four sub-areas of TDM (Transportation Demand Management) that

23http://www.comets-uavs.org/

120

could be helped by the use of unmanned aerial vehicles.

To some extent comparable to traffic control from a scientific stand point, law en-

forcement tasks can be performed through UAVs as well. Amidi and colleagues [12],

reviewing the work carried out on autonomous helicopters during the 1990s at

Carnegie Mellon University, include the following among the goals that can be pur-

sued using aerial robots:

“Vision-guided robot helicopters can fly overhead to aid the police in
dangerous high-speed chases or criminal search operations. Stationed on
top of buildings in urban areas, they can be dispatched in seconds to take
off and relay images from trouble spots. This real time imagery is crucial
to the tactical assessment of the situation by human experts who dispatch
police units to the area.”

Cristopher Bolkcom examined, for the US Congress, the strengths and limitations

of deploying UAVs for a particular kind of law enforcement, namely border surveil-

lance [43]. The same domain has been investigated by Freed and colleagues [122]

also comparing the performances of autonomous vs. human control [123].

Other UAV applications within the civilian domain include remote sensing and

mapping [105], precision agriculture [163], aerial photography of rangelands [304],

photogrammetric recording and documentation of cultural heritage [100], inspection

of bridges [247], power utility assets [261] and dams24, detection of forest [246] and

non-forest [193] fires, and oil spill surveillance, detection, and monitoring [8].

A final factor worth mentioning is the role that unmanned aerial vehicles can play

in scientific research. Scientific and weather data can be collected via UAVs able

to access areas that would be otherwise impossible for humans. The US Geological

Survey, for example, has used a small (less than 10kg) UAV to collect seismic data

from the crater on Mount St Helens after the eruption that took place in 2004 [291].

An even more challenging (although unsuccessful) test was carried out by Lin and

colleagues [217] in 2000, when they attempted to fly a UAV into typhoon Haiyan in

order to collect scientific measurements. The same research group had more luck in

2005, when they eventually managed to penetrate a different typhoon (Longwang)

using an Aerosonde UAV [216].

24http://wn.com/Infotron

121

3.3 Aerial robotics

With the term “aerial robot” we refer herein to any aerial platform (airplane, heli-

copter, airships, etc.) capable of executing specific instructions. These instructions

can be either provided by a human supervisor, or generated autonomously by the

robot. In the latter case, we speak in terms of autonomous control. Autonomous

aerial robotics is therefore the science that studies how to design both aerial robots

and their associated autonomous controllers.

The focus that will be provided in the next few sections is on fixed-wing MAVs,

although many of the topics discussed would fit well if translated to UAVs and

“classic” large-sized fixed-wing aircraft. Zufferey et al. [411] listed the main charac-

teristics and advantages provided by fixed-wing airplane architectures. According

to the authors, this kind of configuration is widespread in robotics due to its sim-

ple mechanical design and energetic efficiency when it comes to travelling relatively

long distances (a point that was also highlighted by Tennekes [362]). But, side by

side with advantages, also come drawbacks and limitations. Quoting Zufferey and

colleagues [411]:

“The use of no-tail or flying-wing geometries has recently gained a lot
of interest in the domain thanks to its mechanical simplicity. However,
fixed-wing airplanes dynamics are known to be nonholonomic because
their trajectory is mostly defined by the orientation of their main axis.
In normal flight regimes, the turn-rate of fixed-wing airplanes is indeed
imposed by the inclination around their main axis (i.e. the roll axis)
and cannot be changed instantaneously. In addition and contrarily to
terrestrial robots, airplanes cannot slow down below a certain velocity
known as the stall speed. They are therefore incapable of hovering or
moving backwards.”

As we will see later, these limitations in terms of motion have a strong impact

on the design of autonomous controllers for fixed-wing aircraft, especially when the

tasks the aerial robots are subject to are not trivial.

122

3.3.1 Fixed-wing MAVs: basic aerodynamics, design issues,

characterisation and control techniques

Fixed-wing aircraft generally rely on three rotation axes, that within the aeronautics

field [76] are commonly named as follows: (a) yaw, the rotation around the top-down

axis, (b) pitch, the rotation around the wing-to-wing axis, and (c) roll, the rotation

around the nose-to-tail axis. Mathematical notation typically uses three symbols to

identify these rotations, that are identified as Ψ, θ, and Φ respectively. Figure 3.5

shows the three mentioned rotation axes in relation to an aircraft model.

Figure 3.5: Rotation axes for a typical fixed-wing aircraft. Source: [322]

The rotations are controlled through so-called “control surfaces” embedded on

the aircraft. The main control surfaces for a fixed-wing aerial vehicle (see Fig-

ure 3.6(a)) are generally summarised under the notation “ailerons, elevator, rud-

der”, combining together the names of the three most common control devices used.

Specifically, the uses of the three control surfaces are as follows: ailerons control the

roll angle, the elevator controls the pitch angle, and the rudder is in charge of the

yaw angle.

Figure 3.6 shows where these control surfaces are located in a typical fixed-

wing aircraft configuration. It is important to consider how rudder and elevator are

generally individual elements, while the ailerons are two (or more) separated items

commanded independently and situated on the two lateral sides of the aircraft25.

25The same sometimes applies to the elevator also. Since, as we will se in the following, the two
parts it is made of always behave at the same way, it can be safely considered as a single object

123

The figure also illustrates the effects generated by the activation of each of these

control surfaces on the aircraft. Raising the right aileron and lowering the left

one (Figure 3.6(b)) cause the aircraft to roll clockwise (and anti-clockwise when

inverting the raising/lowering of the two ailerons, thus the reason for commanding

them independently from each other). Raising the elevator (Figure 3.6(c)) makes

the airplane pitch up (or down if the elevator is lowered). Finally, moving the

rudder (Figure 3.6(d)) left/right causes the aircraft to turn (yaw) left/right in a

corresponding way.

(a) (b)

(c) (d)

Figure 3.6: Control surfaces for a typical fixed-wing aircraft: (a) birds-eye view of
the control surfaces available, plus the throttle; (b) effects generated by the ailerons;
(c) effects generated by the elevator; (d) effects generated by the rudder. Source:
http://www.rc-airplane-world.com/rc-airplane-controls.html

Some authors (e.g. Chao [66]) also include the “throttle”, the device used to

control the motor speed, among the control surfaces. In our opinion the use of the

term “control input,” rather than “control surface” for the throttle would be more

appropriate. Furthermore, it is worth considering how the control surfaces listed

above are those “typically” present of a small aircraft, but their presence in that

form is not a compulsory requirement to control a fixed-wing aircraft. Ailerons,

anyhow.

124

for example, can often be used as elevators also. When elevators and ailerons are

combined together they become “elevons”. They look just like elevators but move

together when it comes to modify the altitude, as elevators do, and individually,

as ailerons do, when the aircraft is intended to steer. In short, one pair of elevons

does the job of elevators and ailerons. This solution, despite providing a lesser

manoeuvrability, is required in specific fixed-wing aircraft configurations, as the

mono-wing ones (see Figure 3.7).

(a) (b)

(c)

Figure 3.7: Three types of wings commonly used for the design of MAVs: (a) delta
wing; (b) swept wing (forward swept or sweptback); (c) straight wing. Source:
http://quest.nasa.gov/aero/planetary/atmospheric/lift1.html

Although more commonly found in large aircraft, additional control surfaces are

the flaps, located on the trailing edge of each wing, between the aileron and fuselage.

Flaps are used to generate more lift at slower flying speeds, as well as in order to

slow down the airplane when approaching the landing stage. Like elevators, flaps

on both wings are operated at the same way (they drop exactly the same amount

at the same time). Again, hybrid setups are possible. “Flaperons”, for example,

are control surfaces that mix the actions of ailerons with flaps. In other words,

one pair of control surfaces along the trailing edge of the wing takes on the job of

125

aileron control and flap control, when needed. On the flip side, “spoilerons” are the

opposite version of flaperons, operated by the control surface moving upwards as

opposed to flaps that drop down.

The main design issues for miniature flying platforms

The concept and design requirements of miniature flying platforms have been investi-

gated in several publications, most notably by Michelson [250, 251, 252], Mueller [266],

and Wu [400, 402].

One of the most important things that the designers of MAV systems have to

keep in mind is a very important threshold. Conventional fixed-wing aerodynamics

has in fact proven to work well as long as the platform controlled is over 15cm in size,

thus staying away from the so-called “low Reynolds number26 regime” [266, 299].

The main issues arising when dealing with miniature platforms over the 15cm

boundary are generally thought to be related to the high density requirements for the

energy source, and to the extreme miniaturisation needed for the electro/mechanical

components. Michelson [252], investigating this domain in more detail, identified a

wider family of aspects of crucial importance related to MAV design: aerodynamics,

structure and materials, flight control, morphology, and energy storage/propulsion

system. In detail we can see what these aspects refer to:

• aerodynamics : working in a low Reynolds number regime implies that aerody-

namic characteristics such as the lift-to-drag ratio change dramatically com-

pared to those observable at “standard” Reynolds numbers. The classic aero-

dynamic analysis methods then break down, often making it compulsory for

the designer of MAV systems to test their platforms empirically in order to

get an understanding of their actual behaviour. Furthermore, the impact on

small flying vehicles by the environmental agents is significant. Watkins and

Vino have carefully analysed the characteristics of the typical turbulent wind

environment that birds, insects and MAVs have to face [386];

26Reynolds number (Re) is a dimensionless number that relates inertial forces of an object such
an airfoil, to viscous forces in a fluid (air).

126

• structure and materials : MAVs require materials that are strong and lightweight

at the same time. This is generally not an easy requirement to satisfy. But

since the strength of materials does not necessarily scale proportionally to

variations in terms of size, materials otherwise unsuitable for aircraft use at

“large” scale can become useful at reduced scales instead (as it is the case, for

example, for ABS plastic). Another crucial aspect involves the method of con-

trol surface actuation. Actuators must be able to move with enough deflection

to effect a change in the flow over a control surface while at the same time

having sufficient force to work under all flight conditions. Several actuation

materials have some of the above characteristics, but often not all of them

and furthermore they are not necessarily compatible with the low voltages or

currents provided by the (limited) onboard energy source;

• flight control : stability and control of MAVs performing in outdoor environ-

ments is a highly relevant topic since there is typically not enough power,

mass, or control surface area to fight the extremes of the environment. Fixed-

wing MAVs suffer particularly in face of roll perturbations, thus roll stability

augmentation is often required as well when a pilot on the ground remotely op-

erates them. Developing a system able to maintain the desired attitude while

manoeuvring through environmental perturbations is thus the main concern

for MAVs designers. On top of this “low-level” system, more advanced trajec-

tory planners can be designed for navigation purposes;

• morphology : when it comes to morphology, MAVs usually fall in one of these

three categories: 1) fixed-wing, 2) rotary-wing, or 3) flapping-wing configura-

tions. The choice among these configurations largely depends on the purpose

the platform is built for. Fixed-wing MAVs can achieve relatively high speeds,

but since their design forces them to fly fast at any time, indoor or confined

operation is impractical. Rotary-wing MAVs have instead the ability of fly-

ing slowly and also hovering, but the drawbacks consist in their low flight

efficiency and duration. While rotor-wing configurations can be used more

successfully than fixed-wing ones in indoor environment, the designer still has

127

to protect the MAV from possible rotor strikes. Flapping-wing designs, al-

though not widespread yet because of significant technical limitations, can be

seen as a solution that incorporate the benefits of both fixed and rotary-wind

configurations, avoiding their most significant drawbacks [249]. A compara-

tive analysis between flapping and fixed-wing configurations, also focusing on

the aerodynamics effects generated by the components required to implement

these designs on low Reynolds numbers, has been performed by Viieru and

colleagues [383]. Alternative design strategies could involve the implementa-

tion of flexible wings rather than rigid ones [175]. A comparison between rigid

and flexible wing based MAVs can be found in De Luca et al. [90];

• energy storage and propulsion systems : one of the main current issues in MAVs

consists in their limited autonomy. This is something that we see in biology

too. Flying insects and birds are constantly challenged by the need for food.

Hummingbirds, for example, can ingest nearly three times their body mass

in nectar per day, due to their high-energy requirements and to their small

bodies not allowing them to store large amounts of food. The same problem

applies to MAVs. To complicate things further, current technologies can not

guarantee the same efficiency of biological systems and often (as it is the case

for batteries) the components used to store energy weigh as much when they

are full than when they are empty. Many alternative solutions have been

proposed over the years, such as the employment of solar power [315], but this

does not seem to be feasible in relation to small MAVs. A recent and promising

approach is the so called “energy harvesting” [13, 81, 88]. For what concerns

the propulsion systems, the most popular propulsion method for MAVs by

far has been the brushless electric motor operating from high energy density

batteries or fuel cells. Many drawbacks are nonetheless associated to this

technology, leading to the investigation of more energy efficient alternatives, as

micro MEMS gas turbine systems [103] and chemical propulsion systems [249].

Leaving apart considerations strictly related with the 15cm threshold, looking

at the “micro” aerial vehicles that have been developed over the last few years we

128

can see some common traits among them. Most notably, the distribution of the

weight generally follows the 50/20/20/10 rule. This means that 50% of the weight

comes from energy storage devices, 20% from the propulsion system, 20% from the

airframe, and the remaining 10% (only) constitutes the payload. This highlights the

strong impact that propulsion and energy storage systems have on the current MAVs

designs. On this basis, Hermans and Decuypere [162] have added to Michelson’s list

the so called “sensor problem”. In essence, the sensor problem stresses the fact

that the payload must be extremely light-weight in order to be carried onboard by

a MAV. Limited size often means limited functionality, and this is certainly the

case when it comes to avionics equipment. High-resolution imaging sensors and

appropriate data storage devices available for purchase at the moment, for example,

are still too big to be employed on small MAVs, making it practically impossible for

them to perform certain kinds of operations.

All in all, the design of small (over 15cm in size) aerial platforms does not

present insurmountable issues anyway, as testified by the number of platforms that

have been developed. The main problems typically come from the testing phase,

rather than the design stage. Williams and Harris [394] discussed in details on the

non-obvious problem about how to find the appropriate level of “man-in-the-loop”

control during flight-testing. Modelling the developed platform can be a challenging

task as well, as demonstrated by the work carried out by Taha and colleagues [361],

specifically aimed to collect the most detailed and effective flight data generated in

real time by their MAV. Finally, issues related to the usability of human-MAV con-

trol interfaces (ground station software) must be considered [127]. As mentioned by

Quigley, Goodrich and Beard [302] it is important to provide the end user with an

appropriate mix of flexibility and ease of use. Recently, on this subject, studies in-

vestigating the employment of multimodal interfaces, with the possible involvements

of PDAs/smartphones and tablet computers also, have been carried out [234].

129

Control techniques

At the beginning of this chapter we have used the term “autopilot” several times.

However the definition of this word has not been clarified yet. MAVs can generally

rely on two alternative control modes: remote control (also “radio control”, RC),

and autopilot control. Remote control does not need extensive explanations, as it

simply consists of a RC receiver installed on the aircraft and a transmitter operated

by a pilot on the ground (see an example of a standard off-the-shelf transmitter in

Figure 3.8). The onboard receiver decodes the signal received from the transmitter

and operates accordingly the servomotors that in turn drive the aircraft. Trans-

mitters typically work according to a proportional principle27 and each feature (e.g.

ailerons control, throttle control, etc.) is conveyed through a specific communication

channel.

Figure 3.8: Example of a multi-channel transmitter for RC aircraft. Source: http:

//www.hooked-on-rc-airplanes.com/rc-airplane-controls.html

Remote controlled aircraft are, in their essence, 100% human-driven, the only

difference in comparison with a “traditional” manned aircraft being in the absence

of the pilot onboard. A certain degree of autonomy is obtained when traditional

piloting and radio-control techniques are replaced by the use of onboard control

architectures, i.e. autopilot systems. Ollero and colleagues [283] have reviewed

27With the term “proportional” the literature typically refers to the fact that a movement
performed on the sticks of the remote generates a corresponding (proportional) modification on
the configuration of the control surface operated.

130

those that are the most commonly used in the field of autonomous aerial robotics28.

Before entering into details about autopilots, it might be useful to look at the

characterisation “problem”, i.e. the set of variables an autopilot system has (or can

have) access to in order to elaborate the proper control strategy.

3.3.2 Characterisation and attitude determination

The characterisation process refers to the identification (and measurement) of the

most relevant variables that must be taken into account in order to instruct an

autonomous controller to make the controlled robot to perform a specific task. Ac-

cording to Chao and colleagues [66], the most important state variables for a UAV,

thus those required for its characterisation, include the following ones:

• pn: inertial (north) position;

• pe: inertial (east) position;

• h: altitude;

• u: body frame velocity measured along the body x axis;

• v: body frame velocity measured along the body y axis;

• w: body frame velocity measured along the body z axis;

• Φ: roll angle;

• θ: pitch angle;

• Ψ: yaw angle;

• p: roll rate measured along the body x axis;

• q: pitch rate measured along the body y axis;

• r: yaw rate measured along the body z axis.

28Although their survey is mostly focused on helicopters rather than on fixed-wing aircraft.

131

It is easily surmised that the interactions between these variables are non-linear,

as well as non-linear are the effects generated by wind and environment turbulences

more in general to the motion dynamics of an aircraft. This high level of non-linearity

is the main reason why designing autopilot systems has always be considered a

significant engineering effort [227].

Among the variables described above, the absolute roll, pitch, and yaw angles

are together referred to as the “attitude”, which is the absolute orientation of the

aircraft (i.e. the relative orientation having the main Earth axis as reference). Atti-

tude is generally represented (although in a restricted manner) on manned aircraft

and computer simulators through an Attitude Indicator (AI), also known as “arti-

ficial horizon” (AH) or “gyro horizon”. The AH is a gyroscope-based device that

indicates pitch (fore and aft tilt) and roll (often “bank”) angles in an immediately

understandable graphical way (see Figure 3.9).

Figure 3.9: An Artificial Horizon (AH) device. Source: http://en.wikipedia.org/

wiki/Attitude_indicator

The structure of such navigation aid29 typically comprises of three elements: 1)

“miniature wings” (horizontal lines with a dot between them representing the actual

wings and nose of the aircraft); 2) a central horizon bar separating the two halves of

the display (with the top half usually blue in colour to represent sky and the bottom

half usually dark to represent earth); 3) degree marks representing the bank angle

(running along the rim of the dial; on a typical indicator, the first 3 marks on both

29It should be noted that Western and Eastern countries have adopted, over the years, different
design principles.

132

sides of the centre mark are 10 degrees apart, the next is 60 degrees and the mark

in the middle of the dial is 90 degrees).

Artificial horizons are compulsory elements for flights in the so called “instrument

meteorological conditions”, i.e. flights that take place in adverse weather conditions

therefore requiring pilots to fly primarily by looking at their instruments, rather

than by outside visual references [375]. Many authors have investigated methodolo-

gies to determine/estimate the attitude of an aircraft in absence (or failure) of the

instrumental reference tools typically used. Cohen and colleagues [74], for example,

have carried out studies comparing the performance of GPS-based systems against

Inertial Measurement Units. Gebre-Egziabher et al. [132] have studied a gyro-free

quaternion-based attitude determination system instead.

3.3.3 Autopilots and autonomous control

According to McLean [242] and how reported by Ollero et al [283], the control

of fixed-wing aircraft can be considered at different levels. Low-level control is

called “stability augmentation” in the airplane control domain; its role consists in

managing perturbations and improving the dynamic response of the aircraft when

the pilot (or a higher level controller/guidance system) provides commands. On

the top of the control hierarchy is the flight path, or trajectory planning. This is a

high-level abstraction that ignores the fundamental problems of flying, focusing on

merely “piloting” an aircraft through specific paths, waypoints, etc.

To reinforce this point, Michelson wrote [252]:

“For autonomous flight, it is common to separate the flight control prob-
lem into an inner loop that controls attitude and an outer loop that con-
trols the translational trajectory of the vehicle.”

Both low and high-level control (i.e. inner and outer loops) are possible on MAVs

through so-called “autopilot systems” (or autopilots). Autopilots are microelec-

tromechanical systems (MEMS) controlled via software and physically interacting

with the control surfaces of the aircraft. They typically comprise of two parts, a state

observer and a controller (thus the name of “state observer-based controllers”). The

133

former provides to collect all the data required for the generation, by the controller,

of the manoeuvres that are then implemented mechanically. The most commonly

used state observers are micro inertial guidance system that include gyroscopes, ac-

celeration and magnetic (compass-like) sensors. The controller generally consists of

an electronic micro-controller, i.e. a miniaturised computer embedded on a single

integrated circuit.

In terms of control theory, autopilots for MAVs can be seen as closed-loop con-

trollers. Closed-loop controllers, as opposed to open-loop ones (that operate only

using the current state of the system and a model of it), rely on feedbacks gener-

ated by the dynamical system they govern. The mechanism is somewhat similar to

the gradient descent method we have seen for neural network training algorithms.

More specifically, the output y of the system at time t is fed back through a sensor

measurement F to the reference value r(t) (the reference value is the desired out-

put). The controller C then takes the error (difference) e between the reference and

the output to change the inputs to the system under control, thus reacting to the

feedback received.

The autopilot of an autonomous aircraft generally answers to two basic needs:

state estimation and control inputs generation (based on the reference path and

the current state of the system). Figure 3.10 graphically illustrates the functional

structure of an autopilot system and the relationships between the various blocks

constituting it.

Figure 3.10: Functional structure of an autopilot system. Source: [66]

Several techniques can be used for autopilot design. PID (Proportional − Inte-

gral − Derivative) based [1] autopilots are possibly the most common ones, but

various alternatives, based for example on fuzzy logic [206, 207] or neural net-

works [289] can be found. A good overview of the main issues involved in the

134

autonomous control of robotics aircraft (namely stabilisation, localisation/naviga-

tion, and obstacle avoidance), with a description of the correspondent approaches to

their resolution proposed among the literature, can be found in the work by Zufferey

and colleagues [411].

In addition to the basic control mechanisms described above, an autopilot needs

a few additional elements in order to be functioning on an aerial robot. A typical off-

the-shelf autopilot for MAVs comprises of an Inertial Navigation System (INS) [28]

and an onboard processor30 to be used both as state estimator (collecting, process-

ing and filtering the information gathered by the sensors) and flight controller. The

GPS receiver, also included in the package, is frequently used. Figure 3.11 shows

the structure of a typical flight control system for a MAV capable of autonomous

flight. When the plane can be controlled either manually or autonomously, the

autopilot also requires a communication link with the ground station in order to

switch between the different control modes possible (i.e. from RC controlled to au-

tonomous and vice versa). This point highlights how, from a software point of view,

a complete autopilot system is made of two different parts: the controller software

running on the MAV and the one running on the computer(s) used as ground sta-

tion(s). Figure 3.11 also illustrates the role played within the closed-loop controller

by the device dedicated to receiving broadcasts from GPS satellites, information

used as part of both the state estimation and, according to the application, to direct

the commands issued by the controller.

Thanks to the surveys recently published by Chao and colleagues [66] and Alvis

et al. [11], we can see reviewed in Appendix B the most common autopilot systems

available on the market. The topics of the integration and calibration of such au-

topilots into physical experimental platforms are not covered within this thesis, but

for further reading one could refer to [351] and, although it focuses more on sensors,

to [7, 349]. An example of the complete development and integration of an autopilot

system on a MAV platform is in [370].

30Frequent choices are PC/104 (http://www.pc104.org/), Crossbow’s Stargate (http:
//platformx.sourceforge.net/home.html), and Gumstix boards (http://www.gumstix.
com/store/catalog/index.php?cPath=27).

Figure 3.11: A typical flight control system for MAVs. Source: [66]

Chapter 4

Distributed Control for Collective

Behaviour in MAV Teams:

Methodologies, Challenges,

Ethical Considerations and Safety

Issues

This chapter aims to link the introductory part of this thesis with the experimental

component.

In chapter 2 we have introduced the field of Evolutionary Robotics, as well as the

two main subfields that constitute it, that are Neural Networks and Evolutionary

Algorithms (mainly Genetic Algorithms). Chapter 3 has instead focused on the do-

main of aerial robotics, with a particular emphasis on fixed-wing Micro Unmanned

Aerial Vehicles. What we will describe here is the approach we have proposed to

combine the two fields together, having as a target distributed control for collec-

tive behaviour in teams of MAVs. Side by side with it, an alternative approach,

which does not rely on ER but rather on Reynolds-style flocking algorithms, is also

introduced.

In order to present our experimental work, this chapter begins by providing

137

an overview on the state-of-art computational intelligence approaches to collective

behaviour applied to teams of unmanned aerial vehicles. The two approaches we

have developed are then introduced and the most significant associated challenges

are discussed.

Finally, a plan of the experiments that will be presented in the following chapters

is included.

4.1 Intelligent autonomous controllers for collec-

tive aerial robots: the scientific literature

Notwithstanding all of the considerations made in the previous chapter, UAVs used

nowadays in real applications are still far from being fully autonomous systems.

Many of these aircraft can rely on their own guidance systems via which they are

able fly without human intervention. The limitation of these systems consists in

the fact that, in terms of capabilities, they are not too dissimilar to the automatic

pilots used within the civilian aviation domain. They simply provide a means of

keeping the aircraft following a given route once they are already in flight. When it

comes to aerial vehicles of significant sizes, takeoff and landing, as well as any other

non pre-planned manoeuvres, remain operations that have to be physically carried

out by human operators. Thus the role of these systems is mainly in relieving the

human component from the completion of the most monotonous parts of the missions

(although, as mentioned in Section 3.1, sometimes autonomous stabilisation could

be enough of a reason for justifying the adoption of an autopilot system for certain

kinds of tasks). For smaller UAVs (MAVs and similar), the degree of autonomous

control can be slightly higher, mostly because extremely high precision in operations

like takeoff and landing is often not a requirement. However, this is rarely reached

for most of the aerial robots we can see in action at the moment.

The scientific effort aimed to make this kind of systems (both UAVs and MAVs)

fully autonomous is slowed down by both technological issues and ethical considera-

tions. The technology is currently the main limit, since the research in autonomous

138

aerial robotics can be still considered to be in its infancy. The first practical appli-

cations have only appeared during the very last few years, and still have significant

room for improvement. Nonetheless, ethical discussions have been constantly aris-

ing since then. Of course, these discussions are boosted by the developments that

UAVs have been subjected to, which have transformed the early unmanned vehicles,

mainly used for intelligence operations, to powerful and “active” war instruments

able to fire missiles and engage in a wide range of missions. Furthermore, even if

this might well be just a speculation of the author, it is safe to assume that the

pilots themselves (even if they are not lobbying against introducing these systems

too early because it would make them superfluous for many practical applications)

are not pushing for an early introduction of the latest technologies.

During the last few decades the field of autonomous mobile robotics has been

tackled from several directions. Several applications of autonomous controllers based

on neural networks have been produced for many kinds of vehicles, from wheeled

robots [366, 367] to ships [407] and submarines [404, 381, 277, 176]. At the same

time, the application of these same design principles to flying robots has not yet been

thoroughly investigated. With the only notable exceptions being the systems devel-

oped by Buskey et al. [57, 58, 59], De Nardi and Holland [89], and Hauert, Leven,

Zufferey & Floreano [111, 156, 159, 160], it seems that current approaches to the

development of autonomous controllers for aircraft mainly rely on techniques other

than neural networks. The design of such controllers via evolutionary paradigms is

even less frequently considered. Among the more popular methodologies employed

are Behaviour-based robotics [95], Genetic Programming [27, 313], evolution-based

path planning [305], modeling field theory [91, 294], and graph search methods [301].

The most significant exception to this trend, as it has been developed around both

neural networks and evolutionary methodologies, can be identified in the above

mentioned work by De Nardi within the Ultraswarm project1. Under the expert

supervision of Professor Owen Holland, De Nardi has designed a helicopter capable

of indoor autonomous navigation through a series of way-points disseminated in the

environment. The helicopter (which flies due to two counter-rotating rotors) is con-

1http://gridswarms.essex.ac.uk/index.html

139

trolled by a feed-forward neural network evolved via a genetic algorithm, composed

of four separate modules, closely resembling a classical PD controller. The four parts

respectively control the longitudinal motion, the lateral motion, the collective (i.e.

the main rotor), and the yaw. The network input simply consists of a subset of the

helicopter state, the vector distance to the next waypoint and the deviation from

the reference heading.

There are few publications on collective behaviour in aerial robotics, regardless

of the methodology. The field gets even more restricted when it comes to fixed-wing

aircraft configurations. Moreover, most of this work consists of theoretical researches

based on mathematical or computer models, with little or no experimentations car-

ried out on real robotics platforms. This is not surprising at all considering the

issues related to acquiring and carrying out experimentations on aerial robots, that

remain significantly stronger than those associated to the more traditional ground

robotics field, where experiments can be carried out inside easily accessible and

modifiable laboratory environments. Among these few publications, we will use the

relevant contribution by Richards and colleagues [313] in order to classify the current

approaches to autonomous cooperative UAVs control into four different categories,

defined as follows:

• behaviour-based control systems : behaviour-based control systems use a net-

work of interacting high-level behaviours to perform a task. Cooperation is

achieved through the local interactions between UAVs performing the job;

• deliberative approach: focused on developing a specific flight path for each

UAV to follow. Such flight paths are rigid and they cannot be altered even

in the event that new information is discovered. In other words, the entire

scenario is assumed to be fixed and already known in all of its aspects;

• adaptive replanning approach: in order to achieve some degree of flexibility,

deliberative systems have been improved by incorporating an element of adap-

tive replanning. As for the deliberative approach, also in adaptive replanning

the main role is played by a centralised controller, which generates a specific

140

flight path for each UAV to follow, based on the currently available informa-

tion. The UAVs move according to the flight paths received, but they are also

able to gather sensorial information from the environment and communicate it

to the controller as it becomes available. As the central controller receives new

information, it may generate updated flight paths that are in turn broadcasted

back to the UAVs;

• reactive strategies : rather than generating specific flight paths that require

live updates, this approach aims to generate a so-called “reactive strategy” for

every UAV to adhere to. This kind of strategy can be thought of as a single

decision tree that controls the aircraft for the life of the mission. The decision

tree determines changes in the UAV’s heading, based on immediate low-level

information collected from its sensors.

To shed some light on the general approaches introduced, we briefly introduce

in the following pages a few works falling in each of the above categories.

For what concerns behaviour-based systems (see Section 2.1.3), a classic example

of autonomous group coordination (in that case among ground-based robots with

the purpose of navigation across hazardous environments) comes from the work by

Balch & Arkin [24]. The literature abounds in terms of research in behaviour-based

robotics, and much of it (e.g. [232, 298]) involves collective behaviour. Only a small

part, though, focuses on aerial robotics. One of the most relevant exceptions to

this trend consists in the work by Schlect et al. [338], in which a team of UAVs

cooperatively conduct a parallel sweeping search of a geographic area for specific

targets (implementing a sort of ASAS, Autonomous Search and Attack System).

The deliberative approach has proven to be highly successful in the civilian

domain, but it is often considered too simplistic from a military perspective and,

more generally, for tasks of non-trivial complexity. The main assumption underlying

this approach consists of having a complete knowledge about the environment and

all the relevant variables available to a central controller. It is easy to identify

the two main drawbacks of this methodology. First of all, just in very few real-

life scenarios (the control tower of an airport is one of these few exceptions) all

141

the information required is always available and completely reliable. Second, the

presence of a central controller in charge of a multitude of vehicles introduces an

important criticality into the system, which must count on one or more backup

systems to guarantee an acceptable degree of reliability. The approach is nonetheless

interesting from a scientific point of view and many remarkable implementations of

it can be found in the literature, as those proposed by Abvlasky et al. [3] (who

stress on the “decomposition problem”), and Sinsley et al. [350]. Using a modified

version of the SIG Kadet Senior RC aircraft2, equipped with a Piccolo autopilot

(see Appendix B), Sinsley and colleagues have implemented an intelligent controller

architecture for collaborative control of multiple MAVs. Collaborative capabilities

include formation flight, search of an area, and cooperative investigation of a target.

Their work is the best possible example of the deliberative approach in its essence.

The cooperation in their system is achieved thanks to a central controller that

develops individual flight paths for each UAV to follow.

A prototypical example of adaptive replanning can instead be seen in the control

system developed by How et al. [169], aimed at controlling a fleet composed of eight

ARF 60 MAVs3. The coordination algorithm developed (see Figure 4.1) relies on

Mixed-Integer Linear Programming (MILP), in combination with a decomposition

approach, based on an (improved) heuristic called “petal algorithm”, which makes it

possible to use such a system in real-time. A number of experiments have been per-

formed by How and colleagues using the control framework they designed, including

an extremely simple two-vehicle formation flight with autonomous rendezvous (de-

spite how How and colleagues define “formation flight”, this just consists of having

two MAVs independently following the same flight path).

The UAV manager concept elaborated by Rathinam, Zennaro, Mark, & Sen-

gupta [306] represents an additional instance of adaptive replanning. They propose

an adaptive replanning strategy for teams of UAVs that have to localise enemy

targets within a warfare environment. Their approach relies on the presence of a

“manager system” interacting with a resource allocator that can redistribute the

2http://www.sigmfg.com/IndexText/SIGRC58ARFB.html
3http://www.duanesplanes.com.au/product.php?productid=1349

142

Figure 4.1: Block diagram describing the control system implemented by How et
al.. Source: [169]

task load among the available resources in case some of them fail (e.g. the case of a

UAV being destroyed by enemy forces). Cooperative search strategies are the main

focus of Vincent & Rubin’s work [384] as well. In their case, the aircraft belonging

to the team fly in a specific configuration that allows them to optimise their inte-

grated sensing capabilities. Despite the fact that the adaptive replanning approach

looks promising, it shares many of the issues generally associated with deliberative

strategies. For example to decide when replanning is required, and the amount of

time needed to calculate and broadcast the new flight paths to the various UAVs are

two non-trivial elements to be taken into account. Scherer et al. [337] have recently

identified a possible solution using two separate but interacting controllers that re-

spectively act on a global and on a local level (“plan globally and react locally”).

Even in this case, a good level of knowledge about the environment is still required.

Vidal et al. [382], within the Berkeley’s BEAR project 4, have proposed an alter-

native implementation of the adaptive replanning approach in order to coordinate

the behaviours of a hybrid group of robots (both terrestrial and aerial) engaged in

a pursuit-evasion game.

Beard et al. [31] have introduced an innovative approach to decentralised co-

operative surveillance using fixed-wing MAV teams. The way they have decided

4http://robotics.eecs.berkeley.edu/bear/publications.html

143

to go falls midway between the deliberative and the adaptive replanning method-

ologies. The approach they have designed consists of four steps: 1) the definition

of the cooperation constraints and objectives; 2) the definition of a coordination

variable, intended as the minimal amount of information needed to be exchanged

by the aircraft to achieve cooperation; 3) the design of a centralised cooperation

strategy; and 4) the use of consensus schemes to transform the centralised strategy

into a decentralised algorithm. The interesting part consists in the fact that every

individual aircraft elaborates a solution to the cooperation problem and then applies

the consensus scheme (point 4) with the other MAVs in order to identify the one

that should be adopted by the group.

Furthermore it is interesting to look at the very accurate way in which Beard

and his colleagues have defined the concept of group cooperative behaviour [31]:

“Group cooperative behaviour implies that individuals in the group share
a common objective and act according to the mutual interest of the group.
Effective cooperation often requires that individuals coordinate their ac-
tions. Coordination can take many forms ranging from staying out of
each others’ way to directly assisting another individual. In general,
group cooperation is facilitated by coordinating the actions of individu-
als.”

For what concerns reactive strategies, a classic example can be seen in the work

done by Moore [263], who proposes an interesting methodology for solving the Missile

Countermeasures Optimisation (MCO) problem under conditions of uncertainty.

The MCO problem consists in optimising the manoeuvres of an aircraft to evade

incoming Surface-launched Anti-aircraft Missiles (SAMs). Implementing a solution

based on genetic programming, Moore designed a system that can take into account

uncertainty related to the incoming missile, both in term of type (weight, current

speed, expected trajectory, etc.) and current state. Sometimes, the implementation

of reactive strategies is aided by the employment of evolutionary methodologies.

That is what has been done for example by Richards et al. [313], tackling the problem

of having a team of UAVs exploring a geographical area in a cooperative way. In their

research, it is a formally defined decision tree, evolved through genetic programming

methodologies which controls the various aircraft to determine how they should

144

handle events that could potentially take place. A very similar approach has been

followed by Barlow & Oh [26]. They relied on multi-objective genetic programming

to design UAV controllers able to autonomously locate and then circle around a

radar site. Barlow and colleagues have also tested the evolved controllers on real

robots (though they were wheeled robots) in order to prove the robustness of the

developed systems.

From a more general point of view it is interesting to look at the contribution by

Gancet et al. [128], who have proposed a classification system in 5 levels concerning

UAVs’ decisional autonomy (see Figure 4.2). In their work, they have presented

a decision architecture and the associated algorithms for coordinating collective

behaviours in multi-MAV systems. The architecture elaborated enables different

schemes of “decisioning distribution” in the system, depending on the available

decision making capabilities of the single aircraft forming the group and on the

operational constraints related to the tasks to achieve.

Figure 4.2: Possible levels of decisional autonomy for MAVs involved in cooperative
tasks (D: distributed; C: centralised). Source: [128]

What is particularly interesting in the work of Gancet and colleagues is that they

employ a hybrid team of MAVs. In one of the tasks studied, for example, they have

used at the same time one airship and two helicopters to perform fire monitoring

over a certain geographical area.

All in all, to conclude this section and before introducing the experimental part

145

of this thesis, we can state again our starting point. Our belief is that alternative

methodologies can be successfully utilised to implement a reactive approach to the

distributed control of aerial robots as an alternative to those described herein. One of

the two approaches proposed by the author, the one on which most of the effort was

spent, relies on Evolutionary Robotics techniques, i.e. using neural networks evolved

through genetic algorithms in order to design autonomous controllers implementing

the desired behaviours. It is worth noting that, though conceptually different, both

GP and ER approaches share the compulsory need for computer simulations [78]

to be used for designing the controllers. No explicit and pre-planned strategies

at a team-level will be developed, since all the aircraft will simply react to the

sensorial input they can gather from the environment. The cooperation will emerge

spontaneously by merely tuning the rules governing the individual behaviours, and

the characteristics and constraints of the task. The second approach proposed is

instead based upon flocking algorithms.

4.2 Design methodologies

In this study we propose two different approaches to the distributed control of groups

of unmanned aerial vehicles.

The first one relies on a combination of Multi-Agent System (MAS) [389, 397]

and Evolutionary Robotics methodologies. The main difference between the prod-

uct of the procedure we are following and a “standard” reactive strategy approach

as described in Richards et al. [313] mainly consists in employing a neural network

controller instead of a formal decision tree. In both cases the controllers are sub-

jected to an evolutionary process and therefore the use of computer simulators for

the training phase is compulsory. The basic principle we have adopted is to some

extent similar to the ones proposed by Buskey et al. [58, 57] and De Nardi et al. [89]

for the autonomous control of unmanned helicopters. The controllers we use are in

fact neural networks whose outputs affect the heading of the controlled aircraft and

its flight direction. However our approach introduces three elements of novelty. The

first is that we aim to study the (simplified) dynamics of fixed-wing aerial vehicles

146

rather than helicopters. Even when employing streamlined simulation models, as

those described in this thesis, helicopters are much more flexible in their ability to

adjust their movements during the flight when compared to fixed-wing aircraft. If,

for example, an unexpected obstacle arises, a helicopter could easily hover overhead,

perform a 180 degrees yaw and then look for a different path to follow. When it

comes to fixed-wing aircraft, this kind of behaviour is not possible. Therefore the

on-line adjustments to the current route need to be extremely accurate (the motion

constraints of fixed-wing aircraft are analysed in more detail in Section 4.3.1). The

only work where neural networks are applied to the control of aerial vehicles that are

not helicopters or airships is the one by Hauert and colleagues [159]. Furthermore,

another novelty consists in our decision to implement a basic obstacle avoidance

mechanism, which represents an additional challenge to the neural controller. Tra-

ditionally, obstacle avoidance behaviour has not been taken into account in studies

regarding UAV path planning. As pointed out by Rathbun et al. [305], this is mainly

due to the fact that UAVs have usually been restricted to operating in areas that

do not contain any other vehicles that are not under the control of a supervising au-

thority. Rathbun’s work, in which an evolution-based path-planner has to deal with

movable and non-accurately estimated obstacles, constitutes one of the few mean-

ingful exceptions to this trend. Finally, the controller we use is made of a single

neural network and not of different modules joined together, each of which dedicated

to managing different sub-tasks, as in [58, 57, 89]. The entire controller acts there-

fore as a single entity. Therefore the task of identifying a favourable decomposition

of the controller into different dedicated modules is left to the evolutionary process.

The second approach is based upon flocking algorithms. No evolutionary pro-

cesses and/or neural networks are involved anymore, but simple hand-designed con-

trollers, adhering to the principles described in Sections 4.2.2 and 7.2.3 are used

instead.

Both the approaches have required, at a certain stage, the use of a computer

simulator. All of the simulators that will be presented in the next chapters have

been designed in accordance with a principle defined as “incremental geometric

147

flight”. Incremental geometric flight is the topic covered in the next section.

4.2.1 Incremental geometric flight

The term “geometric flight” refers to a computer simulated model of flight5 in which

the involved agents are three-dimensional objects - thus capable of performing rota-

tions around their X, Y , and Z axes - characterised by a “forward direction”. The

forward direction is arbitrarily chosen by the designer and corresponds to the pos-

itive section of one agent’s axis. Once the forward direction has been determined,

the agent is free to rotate around the remaining two axe, while constantly moving

along its heading (which, of course, changes over time because of the effect played

by the rotations around the other two axe). The movements happen in discrete

time rather than continuously, i.e. the model is based on a decomposition of time

in small intervals6. At any time step the agent moves by a certain distance along its

heading direction: for this reason the geometric flight model assumes the adjective

“incremental”. The distance travelled during each time step depends on the speed

at which the agent is moving. Incremental geometric flight allows for conservation

of momentum, i.e. the agents are generally free to modify their speed, but they are

bounded to the maximum accelerations/decelerations they can perform in the time

unit, as well as a minimum and a maximum speed they can keep.

Craig Reynolds was amongst the first to formalise the concept of incremental

geometric flight. The quotes from Reynolds listed below [311] demonstrate this:

“Geometric flight is based on incremental translations along the ob-
ject’s “forward direction”, its local positive Z axis. These translations are
intermixed with steering-rotations about the local X and Y axes (pitch
and yaw), which realign the global orientation of the local Z axis. In
real flight, turning and moving happen continuously and simultaneously.
Incremental geometric flight is a discrete approximation of this; small
linear motions model a continuous curved path.

[...] Geometric flight models conservation of momentum. An object
in flight tends to stay in flight. There is a simple model of viscous speed

5Although it could be argued that the same model could apply as well to other domains, e.g.
underwater schooling, as demonstrated by Lobb [220].

6Again, the decision about how long a time step should be is left to the designer. When
incremental geometric flight is used to generate animations for movies or similar, the time step
length is usually associated with one animation frame.

148

damping, so even if the boid continually accelerates in one direction, it
will not exceed a certain maximum speed. A minimum speed can also be
specified [but defaults to zero]. A maximum acceleration, expressed as
a fraction of the maximum speed, is used to truncate over-anxious re-
quests for acceleration, hence providing for smooth changes of speed and
heading. This is a simple model of a creature with a finite amount of
available energy.”

The simulation models developed by the author and described in this thesis all

rely on the incremental geometric flight approach. Sometimes the simulated agents

will be constrained in terms of some of the rotations they can perform (e.g. in the 2D

simulator presented in chapter 5 the agents can only rotate around one axis), whereas

at other times they will have access to a slightly wider manoeuvres repository (e.g.

in some of the configurations tested using the 3D simulator described in chapter 6

the agents can rotate around any of their three axe). In any case, the basis of their

motion will always be an incremental geometric flight model.

4.2.2 Flocking

An alternative way to achieve collective behaviour amongst groups of robots consists

in relying on the so-called “flocking algorithms”. The most prominent example of

an algorithm pertaining to this category is the one designed by Craig Reynolds,

described in detail in section 7.2.3.

The literature provides only a few theoretical works to use as starting point for re-

search in this direction, pioneered by the research carried out by McLain [241] in the

late 1990s. Among these works, Crowther and Rivier [79] have proposed an imple-

mentation of the classic Reynolds-like flocking model on UAVs. Their methodology

produced promising results on computer simulations but has not been subjected

to testing in reality. An alternative approach, although apparently difficult to be

implemented on real robots, is the one described by Lawrence et al. [204], which

according to the authors should scale up to swarm sizes as large as comprised by

147 elements. The reader must have noticed that, notwithstanding the claims made

by various researchers, a demonstration of proper autonomous flocking behaviour in-

volving physical MAVs is still lacking. For this reason part of our efforts are focused

149

in that specific direction.

The term “flocking” should not be confused with “swarming”, a mistake made

for example by Corner and Lamont in [77]. Swarming tends to refer to the field

of Swarm Robotics [369, 30], which has some peculiar characteristics (as for exam-

ple emergence and sitgmergy). Some work on the coordination of multiple UAV

vehicles has been carried out using swarming principle, as it has been the case

of Bamberger [25] and Pamphile [287]. Somewhat different is the work done by

Melhuish and Welsby [244], which implemented what they defined as “secondary

swarming” on a group of airships.

Terminology misuses can cause confusion in regard to both terms. This is for

example the case of Allred et al. [9], who have developed an airborne Wireless Sensor

Network (WSN) - called SensorFlock - for the purposes of monitoring wildlife and

ecological systems. The peculiarity of this WSN is that its sensors are entirely

MAVs. Unfortunately their work does not involve any kind of “flocking behaviour”,

as the project name would otherwise suggest.

In all cases, the simulations we describe here do not share all the principles of

swarm systems, thus we will not define them as Swarm Robotics models. The first

two models simply rely on independent individual behaviours that link together to

make it possible to achieve higher-level tasks. The third model implements instead

a proper flocking behaviour as intended by Reynolds.

Apart from being a way to achieve collective behaviour via distributed control,

flocking is also interesting because it makes possible the study of formation flight.

This is interesting for a number of reasons. When it comes to MAVs, the most

compelling of these reasons are surely autonomy and computational capability. The

small size characterising micro-unmanned aerial vehicles, and the consequently re-

stricted payload they can carry onboard, generally means that the batteries they

use cannot guarantee a long autonomy (it is rare to find MAVs exceeding 40 min-

utes of continuous flight) and that the onboard information processing devices (i.e.

computer boards) are limited in terms of computational power. Flying in forma-

tion would allow the aircraft to save energy during the flight due to the reduced air

150

resistance the MAVs will encounter, and to share among the individual members

complex computational tasks, that could in this way be performed in the required

amount of time (or, tasks impossible for a single MAV would become possible for a

group of them).

4.3 The main challenges

Each of the two approaches we propose for the implementation of collective be-

haviour comes with its own challenges. For what concerns the ER models, apart from

the general and well known issues generally associated with Evolutionary Robotics

(already reviewed for example by Inman Harvey [152] in 1993 and for the most part

still valid today), additional complications are present, mainly in terms of motion

restrictions and computation time required for the evolutionary process. The issue

of having to deal with non-omnidirectional robots characterised by a limited turn

rate is the main factor affecting the flocking-based approach as well. Both design

methodologies elaborated have then to face the so-called “reality gap” problem.

All of these issues, plus a few more, are described in the following sub-sections.

4.3.1 Fixed-wing aircraft: motion constraints

Fixed-wing MAV configurations are interesting because of their simple underly-

ing mechanical design and the associated high speed and energetic efficiency pro-

vided [411]. However, they present some drawbacks when compared to rotary-wings

or to other more recent (and still quite unusual) flapping-wing aerial vehicles.

The most compelling drawback is related to their highly constrained motion dy-

namics. Unlike ground-based robots or helicopter-like aircraft, they need to maintain

their flight velocity above a certain threshold in order to prevent a stall. Slowing

down the global speed of the robots can therefore only be done by having the robots

turn, thus making it impossible to implement “stop-and-wait path deconfliction al-

gorithms” (as defined by Beard and colleagues [31]). The rate at which these robots

turn is also capped (robots can not turn on the spot) depending on the dynamics of

the platform. These properties lead to more complex robot trajectories than what

151

would typically be observed with other platforms as shown in Figure 4.3. Taken

from a collective behaviour perspective, such motion dynamics/constraints could

lead to robots rapidly changing their position relative to one another which can

disturb inter-robot interactions and communication [104, 156].

Figure 4.3: Motion constraints for a fixed-wing aircraft. Source: [156]

Additional issues, though more relevant to experiments involving physical robots

rather than simulation, are those associated with takeoff and landing procedures.

While helicopters or other forms of multi-rotor air vehicles can take off or land

by simply moving along a vertical axis, fixed-wing aircraft traditionally require a

significant amount of space on a runway to reach the speed needed to take off. The

landing phase also consists of a slow and progressive reduction of both the flying

altitude and the loiter speed, until the aircraft gets to the ground, thus requiring

a wide and clear area available. The situation is slightly better when it comes

to MAVs. Many of them can be in fact hand-launched or may integrate VTOL

functionalities, but as we can see in Appendix A this is not the case for all of them.

The same applies to landing/recovery procedures.

One of the main challenges in this thesis is therefore to develop controllers that

should will be able to cope with the typical motion constraints of fixed-wing aerial

robots by acting mainly on their turn rate while maintaining a constant forward

speed.

152

4.3.2 Obstacle avoidance

The issue of obstacle avoidance is a well-known area of studies in mobile robotics.

Khatib, in his pioneering work published in 1985 [188], was amongst the first re-

searchers to demonstrate how this problem, that was traditionally thought to be a

high level planning problem, could be instead tackled and solved in a distributed

way.

Behaviour-based and Evolutionary Robotics are two approaches that can deal

very well with obstacle avoidance performed in real-time. They do not require

any higher-level knowledge of the environment other than the limited perception

provided by a set of sensors embedded on the vehicles controlled. Sensors can be as

simple as ultra-sonic ones, as demonstrated for the first time in 1988 by Borenstein &

Koren [47], which have become the preferred method (together with infrared sensors)

for implementing obstacle avoidance behaviour in mobile robotics platforms.

4.3.3 Target tracking

The problem of tracking and approaching a moving target is also fairly common

across the scientific literature. Traditional approaches to autonomous navigation

usually require the robot to elaborate a prediction of the target motion based either

on real-time observations or on already available knowledge [42]. Based on this

prediction, the robot can then modify its action plan accordingly.

A common instrument employed in control theory is the Kalman filter (or Lin-

ear Quadratic Estimation, LQE) [184], a recursive algorithm which uses a series of

measurements collected over time in order to produce estimates of unknown vari-

ables. This algorithm allows to estimate the past, present, and future states of a

certain system, even when the precise nature of the modeled system is unknown

and the observations are noisy [391]. The Kalman filter has been successfully used

in autonomous robotics for tasks as different as state estimation for robotic heli-

copters [275] and robot localisation inside noisy environments [275].

The main drawback of analytical methods as the Kalman filter consists in the fact

that extracting the information required and then translating it into coherent actions

153

is generally a non-trivial task. It is true that this approach, although generally hard

to be implemented, can be effective and lead to good results when carefully put into

effect. Nonetheless, in presence of a target that does not move according to any

specific pattern, the task increases dramatically in terms of complexity, making it

difficult for a human designer to reach a working solution using traditional control

theory methodologies.

Various authors - such as Ablavski [3] and Bertuccelli [36] - have proposed inter-

esting ways to overcome this issue, respectively focusing on individual and collective

behaviours, but the problem remains a serious one and a definitive solution to it

seems unlikely to be achieved in the near future.

4.3.4 Collective behaviour, distributed control, and cooper-

ation based upon implicit communication

Collective behaviour involves cooperation amongst individuals belonging to the same

group having to perform a certain task together. The choice we have made, which

focuses this work on collective behaviours rather than on the problem of controlling

an individual unmanned aircraft, has been dictated by a pure scientific interest.

Even if it is true that many interesting issues can be faced during the design of a

“low-level” controller (essentially an autopilot system) for a single aerial vehicle (e.g.

autonomous takeoff and landing are two areas where many different and potentially

very interesting approaches could be tested), the room for “intelligent” approaches is

small. Or, at least, it is relatively small when compared to the extremely wide range

of possibilities available to researchers willing to explore the domain of collective

behaviours. Good examples of the complexity involved in designing effective coop-

erative strategies for teams composed of many unmanned vehicles can be seen in the

work (although focused on wheeled robots) of Hussain, Montana, & Vidaver [174],

as well as that of Gaudiano, Bonabeau, & Shargel [130].

According to our perspective, when we look at cooperation we do this from a

complex systems point of view. As the computer models we have developed can

be easily interpreted as sophisticated multi-agent systems, we want the cooperation

154

amongst MAVs not to be explicitly designed but, rather, to emerge as a high-level

property from the low-level interactions between the individual aircraft and the

environment, replicating in this way dynamics typically observed in multi-agent

systems.

Moreover, distributed control, intended as the implementation of collective be-

haviour within a group without using a central controller, is generally considered a

notably interesting problem from both technological and scientific perspectives [279].

The advantages provided by distributed control systems over centralised ones are

mainly related to the greater degree of robustness (intended as fault tolerance)

they offer, as technical or communication problems affecting one of the individ-

ual elements controlled does not affect the functioning of the entire system. As a

drawback, distributed controllers are generally more challenging to design than cen-

tralised systems. These points have been highlighted by Wu [399], who has argued

that distributed control is generally preferable over centralised control since its non-

critical reliance on any specific element can in turn guarantee increased reliability,

safety and speed of response to the entire system.

Coordination and distributed control, however, can not exist without communi-

cation. If the individual members of a group have to perform a certain task together

and no centralised controllers are available in order to instruct every robot with re-

gard to what it is supposed to do, the individuals must necessarily have a means to

exchange information amongst themselves. Research by Kube [198] demonstrated

how explicit communication is not a compulsory requirement in collective robotics.

This does not contradict our previous point. The point highlighted by Kube is sim-

ply that communication does not necessarily need to be explicit (thus intentional),

but it can be implicit (i.e. non-intentional) as well. An implicit communication

exchange between two agents takes place for example when one of them gathers

information by observing the behaviour of the other agent, without the latter neces-

sarily willing to communicate anything by mean of its actions. This is the approach

that we will follow herein.

155

4.3.5 Computation time issues

The Evolutionary Robotics approach is particularly expensive in computational

terms for what concerns the evolution of the controllers. According to the com-

plexity of the software simulator used and of the behaviour to be evolved, a single

evolutionary run could easily last for a significant amount of time (i.e. hours or days

depending on several variables, as for example the computational power available,

the programming language used to write the evolutionary algorithm, etc.). Fur-

thermore, evolutionary algorithms are heavily affected by elements of randomness,

thus requiring the evolution process to be repeated several times in order to gener-

ate reliable results. Powerful computers are therefore required, especially when the

modelling of the various components simulated has been done with a rich level of

detail. This is often the case for much of the research in ER carried out nowadays,

which frequently relies on complex real-physics based software simulators. Amongst

the first experiments involving physics-based simulators are those carried out by

Bongard et al. [45] and by Reil & Husbands [310], both focused on the development

of a control system for the locomotion of a bipedal robot.

In more recent times, thanks to the general improvement in personal computer

technologies that has made computation power more accessible, this approach has

gained even more popularity, extending to areas that could have not considered

approachable by Evolutionary Robotics just a few years ago. An example can be

seen in the Mars Rover simulator developed by Peniak and colleagues [293], an

Evolutionary Robotics model based upon a complex physics-based simulator where

an accurate replica of the Curiosity rover7 has to accomplish autonomous navigation

and obstacle avoidance relying either on the readings coming from a set of ultra-sonic

sensors or on active vision mechanisms.

This computational/time issue, which is the most compelling reason for ER

researchers to use computer simulators rather than evolve behaviours straight on

physical robots (as this would make the process even slower), has been tackled in

the work presented herein in three complementary ways: 1) reducing to the mini-

7http://en.wikipedia.org/wiki/Mars_Science_Laboratory

156

mum level possible the complexity of the simulator software used; 2) testing several

variations of the evolutionary algorithms in order to find the one offering the best

tradeoff between accuracy of the behaviours evolved and computational complexity;

3) introducing multi-threading programming methodologies to develop simulators

running on multi-processor computers. Details about the computer facility used for

our simulations are available in Appendix C.

4.3.6 The reality gap

When moving from computer simulations to real robots it is hardly surprising to

discover that the performances of the developed (or evolved) controllers drop signif-

icantly. This issue is generally referred to as the “reality gap” and it is particularly

relevant in Evolutionary Robotics. As what takes place inside a computer simu-

lation is typically much more precise and accurate than what happens in reality,

controllers designed with a computer “in mind” can frequently get lost as soon as

they are tested on the real world. This is due in part to the fact that physical

hardware can fail in many different respects and that sensor readings might often be

inaccurate. The main reason is that the real world is extremely more unstructured

and irregular than that which any computer simulation might be able to replicate.

A controller evolved in simulation could react when tested in reality as if being put

into an environment it had never experienced before (a problem which, we should

stress, is common among every design technique and not peculiar of ER).

Husbands and Harvey, two of the pioneers of Evolutionary Robotics, demon-

strated that they were well aware of this problem as far back as 1992 [173]. The

solution they proposed is still the most widely employed today. It simply consists in

making the evolutionary process in simulation less optimal, through the addition of

artificial noise to the sensor readings. Effort must be put into generalisation as well.

Generalisation can be achieved during the design of a controller by ensuring that it

is exposed to the most different conditions possible, in such a way that it will not

“overfit”, i.e. to only perform well in the environment it was trained for. In this way

the controller will not evolve exploiting behaviours due to possible mistakes made

157

by the programmer of the simulator or particular (not necessarily existing outside

of the simulator) environment characteristics.

Extensive research on the reality gap issue, specifically focusing on Evolutionary

Robotics, has been carried out by Jakobi et al. [180], having as aim the measurement

of the proper amount of noise to be used in the simulations. Investigations on the

role of noise have also been performed by Miglino et al. [253], who introduced in

their simulations what they have defined as a “conservative” form of noise.

Zagal and colleagues [405] have elaborated a different approach instead, con-

sisting in the robot to keep evolving/adapting its own autonomous controller once

transferred to the real world.

Later on, the aforementioned Jakobi theorised “the minimal simulation ap-

proach” [179], dictating that an Evolutionary Robotics simulation must only model

the aspects that are relevant for the controller development, making the strong

assumption that the designer is able to identify those.

Zufferey [410] has discussed in detail the problem of reality gap in the more

specific area of aerial robotics instead, focusing an indoor airships.

4.4 Ethical considerations on the military employ-

ment of lethal autonomous robots

As we have seen in the previous chapter, the aerial autonomous robotics domain

is characterised by a strong military footprint. Most of the latest developments in

the filed come from military research and the battlefields are the arenas in which

the technological innovations are put at test. The US, who have been employing

several thousands of military robots during operations Enduring Freedom and Iraqi

Freedom [345], have launched several plans (see for example the Future Combat Sys-

tems8 running from 2003 to 2009, the Unmanned Systems Roadmap 2007-2032 [70],

and the Unmanned Aircraft Systems Roadmap 2005-2030 [62]) aiming to increase

the proportion of autonomous robots within the American military apparatus. Ac-

8http://en.wikipedia.org/wiki/Future_Combat_Systems

158

cording to their plans, one third of the US operational ground combat vehicles will

be unmanned by 2015 [345]. No exact figures have been provided for UAVs, but

it is not utopia to believe that these numbers could be even higher for unmanned

aircraft.

At the current stage the widely employed Predator and Reaper UAVs, as well

as the counterparts employed by other militaries, are only semi-autonomous robots,

as they rarely fly in complete autonomy and they still require a man-in-the-loop

to decide when to perform a potentially lethal operation (e.g. to fire a missile).

The legal and ethical implications for the men in control of these UAVs are the

same as for piloting an aircraft or calling in the coordinates for a traditional air

strike. However, one the new goals of the military research now consists in getting

rid of the man-in-the-loop and letting the military robots, either aerial, underwater

or terrestrial, to acquire and fire their targets autonomously [46, 346, 348]. Apart

from the technological challenges that this plan implies, there are several ethical

considerations that have not only to be taken into account, but also to be promptly

addressed.

In the next pages we are not going to discuss the morality of the research in

autonomous robotics applied to the military world. Anyone may have his opinion

on the topic, which I personally respect and which I do not intend to affect in any

way. Rather, we will analyse the ethical implications of having autonomous robots

on the battlefield in the light of the modern laws of war. Keeping in mind that,

as suggested by Arkin [16], when properly functioning, robots can be even “more

ethical” than humans, as they are unlikely to imitate the countless war atrocities

committed by human soldiers during history.

4.4.1 The laws of war and the ethics of modern conflicts

Modern armed conflicts adhere to a rigorous set of rules concerning both the con-

ditions under which wars can be started, and how, once begun, they must be con-

ducted. This body of law is generally referred to as the “laws of war.”

Modern laws of war take inspiration from the “Just War theory”, a doctrine of

159

military ethics whose roots date back to 2,000 years ago9. The main goal of this

theory consists in defining the criteria for a war to be considered “just”, thus started,

and those according to which carry it out. In its very essence, Just War holds that a

violent conflict ought to meet philosophical, religious or political criteria, reflecting

the footprint left over the years by several Christian philosophers10.

Just War theory consists of two main principles: jus ad bellum, and jus in

bello11 [68]. The criteria belonging to the jus ad bellum category define the right to

wage war:

• just cause: innocent human lives must be in imminent danger and intervention

must be a mean to protect these. The reason for going to war can not be solely

in recapturing things or punishing people who have misbehaved;

• comparative justice: the injustice suffered by one of the parties involved in a

conflict must be significantly higher that suffered by the other(s);

• competent authority : a genuine war must be paired with genuine justice. Thus

a just war can only be initiated by a political authority within a political system

that allows distinctions of justice;

• right intention: force must only be used for the purpose of correcting a suffered

wrong, without any material/economical implication;

• probability of success : the use of weapons must not be advocated in futile

causes or where disproportionate measures would be required to achieve suc-

cess;

• last resort : force is the last resort. It must only be used when every peaceful

and viable alternative have been seriously tried and exhausted, or are clearly

not practical;

• macro-proportionality : the anticipated benefits of waging a war must be pro-

portionate to its expected evils or harms.

9Cicero’s “De Officiis” discussed “just war” in 44BC.
10Amongst the various contributors, Thomas Aquinas played a crucial role.
11Although some theorists have recently proposed an additional third category, jus post bellum.

160

For what concerns jus in bello instead, its principles dictate how combatants are

expected to act once war has begun:

• discriminability : the acts of war must be directed towards enemy combatants

only, and not towards non-combatants (e.g. civilians);

• proportionality : an attack can only be launched against military objectives

in the knowledge that the incidental civilian injuries would not be clearly

excessive in relation to the estimated military advantage;

• military necessity : the governing principle of a just war must be the one

of minimum force. An attack must be targeted to a military objective and

intended to help in the military defeat of the enemy. The harm caused to

civilians and to their properties must be proportional and not excessive in

relation to the direct military advantage anticipated;

• fair treatment of prisoners of war : any solider, either captured or surrendered,

no longer poses a threat. Therefore he must not be tortured or mistreated in

any way;

• no means malum in se: combatants must not use weapons or other methods

of warfare considered as evil (e.g. mass rape, forcing soldiers to fight against

their own side, or using weapons whose effect cannot be limited by time and

space).

In modern times, two widely adhered international treaties have implemented

the principles of Just War. The first is the Hague convention, signed in 1899 and

further extended in 1907; the second is the 1949 Geneva convention.

4.4.2 The experts’ point of view on autonomous robotics

Why the above parentheses about how modern wars are regulated? Because this is

the context in which several scientists fear autonomous robots might not be able to

cope once humans are taken out of the control loop.

161

Amongst all the roboticists, philosophers and war strategists that have studied

the potential impact of autonomous military systems a prominent role has been

played by British scientist Noel Sharkey. Since a few years ago, Sharkey is involved

in a fierce campaign aimed to convince policymakers around the world that today’s

robots are nowhere near to fulfill their expectations. In his work ’’Weapons of

indiscriminate lethality” published in 2009 [347], Sharkey specifically addresses two

elements of the jus in bello principles that he believes are still out of reach to modern

robotics systems: discriminability and proportionality.

Concerning discriminability, Geneva convention suggests the use of “common

sense” in discriminating between civilians and combatants. An additional proto-

col ratified in 1977 specifies that one who is not a combatant must be classified

as a civilian. How to instil “common sense” in an artificial system is one of the

most challenging issues faced by modern AI [236]. How could an artificial system

autonomously classify between combatants and civilians? The task is not easy by

any means. Is anyone wearing a uniform a combatant? Surely not. But even if

that would be the case, what classifies a certain garment as a uniform? Should we

state instead that anyone carrying a weapon is a combatant? Not necessarily, as

anything could be considered a weapon depending both on the context and on the

intentions of who holds it. In other words, to apply human-like “common sense” is

a hugely complex task, which requires either a wide amount of information available

and the ability to process this information in the light of a wider environmental con-

text. Even assuming to have access to extremely reliable robot sensor systems, so

sophisticated as to be capable of extracting any useful piece of information from the

environment (something that current technology does not allow yet), matched with

algorithms that can use this information together with previously learned knowl-

edge to classify in real-time between civilians and combatants, the discriminability

problem would still not be solved completely. On one hand the friendly fire issue

remains a concern. How to discriminate between an ally and an enemy soldier and

act accordingly? Some authors, as for example Garfinkel [129], have suggested to

equip every soldier with RFID tags, thus making the recognition task as simple as

162

possible. This solution has nonetheless a number of drawbacks. For example an

enemy unit might get rid of his RFID tag, or, even worse, he can produce a fake

one pretending to be an ally rather than an enemy12. On the other side the legality

of the combatant in front of the robot has to be taken into account. An enemy

soldier may be wearing a uniform, carrying a weapon and having the proper RFID

tag with him, but his intention could be that of surrendering rather than fighting.

How can a robot understand that without a proper theory of mind embedded in its

circuits? Some authors, as for example Canning [64], have found a shortcut for this

problem proposing a working principle for military robots which can be summarised

in the sentence “let machines target other machines only”. Sharkey, more radically,

proposed to ban the military use of autonomous robots until they can pass a sort of

“innocent discrimination test” [347].

The second potential element of troubles identified by Sharkey is the principle

of proportionality, which requires that the anticipated loss of life and damage to

property incidental to attacks must not be excessive in relation to the concrete and

direct military advantage expected to be gained. In other words, the “force” to

be used during a military action must be “proportionate”, i.e. neither excessive

nor insufficient, to the advantages that can be achieved. How to calculate the

right amount of force to apply in a certain operation? Unfortunately there is a lot

of uncertainty on how to make such calculation. Military officials are specifically

trained for years for this purpose. The difficulty involved in this operation is partly

due to the fact that the entire process relies on a extremely wide array of factors,

such that it has never been possible to capture all of them in an algorithm (so

to be implemented on a computer). Furthermore the military decision-makers, in

performing their calculations, must also take into account the possibility for at least

some of the intelligence they have at disposal to be inaccurate (as it is has be proven

to generally be the case [37]).

Alongside discriminability and proportionality there is nonetheless another very

important factor to consider when thinking about the introduction of military robots

inside warfare environments. This factor, which has been extensively studied by

12Similar topics are covered by Richard Clarke and Robert Knake in their book “Cyber War” [72].

163

Sparrow [352], is responsibility. Who has to be considered responsible in case some-

thing goes wrong? If, for example, a robot such as the SWORDS13 decides to

exterminate the civilian population of a village? Or, simpler and much more likely,

if it fires a single bullet which misses its designated target and ends up injuring an

unfortunate ally soldier? Again we are facing a tough scenario. The entire chain

that brings a robot to the battlefield is a long one (as it includes manufacturers,

programmers, designers, etc.) and errors can take place at any stage. Even a well

projected robot might suddenly behave unexpectedly because of some unavoidable

hardware failure [345]. Modern militaries rely on rigorous procedures to determine

who is responsible for any sort of adverse event that could potentially occur during

a conflict. But machines have never been considered to be anything other than

tools, thus being exempt from any attribution of responsibility. Autonomous robots

require the military theorists to develop new responsibility attribution procedures.

As Sharkey ironically put it [347]:

“Who is to be held responsible for the lethal mishaps of a robot? Certainly

not the machine itself. There is no way to punish a robot. We could just

switch it off but it would not care anymore about that than my washing

machine would care. Imagine telling your washing machine that if it

does not remove stains properly you will break its door off. Would you

expect that to have any impact?”

Although the author agrees with several of the issues raised by Sharkey, he is

also convinced that the British scientist is somehow too pessimistic in his views. It

is certainly true that robotics is a growing but not yet mature area of studies. It is

true as well that today’s robots are not capable of performing tasks that government

decision-makers believe are at their reach instead. Are these solid enough reasons

for entirely banning robots from the warfare scenarios? Probably not. Nonetheless

they surely can serve as useful warnings that every person working in the field should

take into proper consideration. There are no reasons, in the author’s opinion, for

halting the research on such robotics systems and the associated field tests, as long

13http://en.wikipedia.org/wiki/Foster-Miller_TALON

164

as military planners do not expect to see robots smoothly performing extremely

sophisticated operations in the war field as those depicted in Hollywood movies.

Furthermore a few flaws can be found in Sharkey’s reasoning. First of the sci-

entist seems to always refer in his publications to AI systems based on explicit

knowledge representation, thus implicitely restricting the entire Artificial Intelli-

gence arena to the symbolic approaches only. Sharkey plainly seems to be unaware

(although, as an expert on the field, he surely is not) of the several design method-

ologies for intelligent systems developed in the last decades that do not rely either

on explicit representations of knowledge, on formal decision-trees, or on rule-based

systems14. The work we are presenting in this thesis constitutes a perfect exam-

ple in this sense. We will see autonomous controllers for unmanned aerial vehicles

based on evolved neural networks that, by definition, can perform complex tasks

without the need for any formal representation of knowledge. Second, in pointing

out the limitations of modern robots, Sharkey (especially in [346]) likes to think

of military autonomous systems dealing with irregular insurgents. It is certainly

true that a clearly identifiable post-Cold War trend is the one towards asymmetric

warfare. As the continuous advances in military technologies tremendously widen

the gap between the war capabilities of different nations (and the militarily most

advanced countries prefer to fight each other over diplomatic channels rather than

on the field), fewer and fewer countries are prone to wage war to each other. Much

more common is the case in which a regular army has to face insurgents rather than

another conventional army, as recently happened in Afghanistan during operation

Enduring Freedom. At the same time the existence of this trend does not imply that

the research in military equipment for “conventional” wars has to be stopped. Po-

litical equilibrium, as history demonstrates, can change suddenly. Of fundamental

importance, for the military forces of every country, is to be ready and well equipped

in case the unexpected happens. Autonomous robots, as we have extensively dis-

cussed in previous sections, can constitute a very strong asset in any military force.

And, even if military robots can arguably do their best in a “regular” war, this fact

14One of the reasons for discussing about these methodologies only might consists in the fact
that it is easier to produce a safety case using purely deterministic and formally defined methods.

165

does not prevent them to be potentially very useful in different warfare environments

as well. In particular when both ongoing and future research will have released their

outcome.

4.5 Safety issues

The previous paragraph has dealt with the ethical issues related to the employment

of autonomous unmanned aerial vehicles (and robots more in general) in war envi-

ronments. There is nonetheless an additional area that, as reviewed in chapter 3,

is likely in the next few years to constitute a good share of the overall MAV usage.

This broad domain is law enforcement and includes several activities as for example

crowd control, accident investigation, search and rescue, covert surveillance, etc.15.

Using autonomous aerial vehicles for law enforcement tasks often implies having

them to fly over non-warzone environments (i.e. where safety issues have to be taken

into serious account), as the most crowded quarters of a traditional modern city, thus

endangering the safety of people present in those areas. On the technical side there

are obviously a lot of issues that have to be dealt with before having MAVs flying

comfortably in such environments. Autonomous control is not a straightforward

task when related to urban areas, to an extent which does not only depend on the

topology of the territory, but also on the kind of robotics platform used (helicopters,

as we have discussed already, are by far more manageable than fixed-wing MAVs,

but also much noisier in comparison, which could be an issue for particular kinds

of task). However, what we are interested in discussing here is rather what are

the requirements that should be enforced for MAVs to safely operate within urban

environments.

At the current stage there is a lack of ruling on the topic. Several researches have

been published focusing on large-size UAVs (see for example Dalamagkidis et al. [82]

dealing with the risks of unmanned aircraft ground impacts, or Loh et al. [222] on

UAS in the civil airspace), but these do not account for the different hazards that

15The private company Aeryon Labs proposes an interesting analysis on its website focusing
on the most compelling reasons for a police force to employ MAVs (http://www.aeryon.com/
applications/whitepapers/224-whitepaperpolice.html)

166

small MAVs could generate (although small in terms of size and weight, even small

aircraft could pose a significant threat for people exposed to them, mainly because of

the damage potentially provoked by moving mechanical parts such as the propellers

or the rotors). Nonetheless typical regulations concerning RC aircraft (or “model

aircraft” as they are often referred to in lawmakers’ jargon) exist already and can be

used as a basis for further work in the direction of creating a proper legal framework

for operating autonomous MAVs. In the UK, the prototypical example of a country

with modern model flying regulations, the authority in charge of the aerial space is

the Civilian Aviation Authority (CAA), which provides somewhat loose guidelines

for the use of MAVs in public places. In its publication titled “Model Aircraft: A

Guide to Safe Flying”16, focused on “small unmanned aircraft” (according to their

definition, any unmanned aircraft having a mass of no more than 20kg), the CAA

determines the conditions under which such an aircraft can be flown. Amongst

these, there are two points warranting a closer look (article 166):

(2) The person in charge of a small unmanned aircraft may only fly the

aircraft if reasonably satisfied that the flight can safely be made.

(3) The person in charge of a small unmanned aircraft must maintain

direct, unaided visual contact with the aircraft sufficient to monitor its

flight path in relation to other aircraft, persons, vehicles, vessels and

structures for the purpose of avoiding collisions.

As we can see there is a wide degree of subjectiveness put in the hands of the

person flying the model, as it is up to him to determine whether “he is reasonably

satisfied that the flight can safely be made.” Once this condition is met, the only

additional requirements simply consist in maintaining direct visual contact with the

aircraft throughout the entire flight.

It is important to consider that a further distinction is applied by CAA between

small unmanned aircraft having more or less than a 7kg mass respectively. Those

falling in the latter category do not require any authorisation from the civilian

authority.

16http://www.caa.co.uk/default.aspx?catid=1416&pageid=8153

167

Article 167 imposes additional requirements for (not better defined in terms of

size) “small unmanned surveillance aircraft”:

(1) The person in charge of a small unmanned surveillance aircraft must

not fly the aircraft in any of the circumstances described in paragraph

(2) except in accordance with a permission issued by the CAA.

(2) The circumstances referred to in paragraph (1) are: (a) over or within

150 metres of any congested area; (b) over or within 150 metres of an

organised open-air assembly of more than 1,000 persons; (c) within 50

metres of any vessel, vehicle or structure which is not under the control

of the person in charge of the aircraft; or (d) subject to paragraphs (3)

and (4), within 50 metres of any person.

(3) Subject to paragraph (4), during take-off or landing, a small un-

manned surveillance aircraft must not be flown within 30 metres of any

person.

(4) Paragraphs (2)(d) and (3) do not apply to the person in charge of

the small unmanned surveillance aircraft or a person under the control

of the person in charge of the aircraft.

(5) In this article a small unmanned surveillance aircraft means a small

unmanned aircraft which is equipped to undertake any form of surveil-

lance or data acquisition.

Of course these conditions can not be all satisfied during law enforcement oper-

ations. Flying at a safe distance from people would make MAVs absolutely useless

for operations as crowd control or intelligence gathering more in general. The only

solution we can see would consists in allowing security forces to operate their au-

tonomous aircraft on the basis on much more permissive laws. In order to do so

safely MAVs need serious improvements in their control systems compared to to-

day’s standard, not only for what concerns obstacle avoidance, but also take-off and

landing. The last two are indeed the most critical stages of every flight, and those

requiring as well the more room to be performed effectively (particularly for aircraft

168

with fixed-wing configurations). Furthermore, a common practice amongst experi-

menters in autonomous aerial robotics consists in having the possibility of switching

at any time from autonomous to manual control via radio link (having also a backup

radio control system in case of failure of the main one). This capability should be

present in MAVs used within urban environments as well, as the risk of a malfunc-

tioning is always a significant one. This implies that an expert pilot of RC aircraft

has to be available in the neighbourhood of the area where MAVs are employed (not

necessarily in the proportion of 1-to-1), at least as long as the technology does not

become so accurate that this presence would be unnecessary.

4.6 Plan for the experiments

The main characteristics of the two design methodologies we have decided to adopt

(Evolutionary Robotics and flocking algorithms) have been introduced earlier on

and are summarised in the bullet points below.

• Evolutionary Robotics approach: a multi-agent system involving teams of

fixed-wing MAVs dealing with several variants of “search and hit” tasks is

employed to implement a reactive strategy approach. The autonomous con-

trollers evolved are simple neural networks that also have to be capable to

generate an obstacle-avoidance behaviour in the robots;

• flocking algorithms: a computer simulator, replicating dynamics based upon

incremental geometric flight as defined by Reynolds, is used to design con-

trollers for MAVs obeying to the flocking rules of: 1) collision avoidance; 2)

velocity matching; and 3) flock centering.

Now time has come to describe what the experimental part of this work consists

of. For the purposes of this thesis, three different computer models have been

developed.

The first one, described in chapter 5, is a two-dimensional Evolutionary Robotics

simulator which focuses on individual and cooperative navigation tasks from a high-

level perspective. The main goal of the experiments carried out with this simulator

169

is to investigate whether the motion of fixed-wing aircraft (including all of the con-

straints we have discussed so far) can be successfully modelled through traditional

Evolutionary Robotics methodologies or not. Several experimental setups are tested,

all of them requiring a group of MAVs to autonomously fly towards a certain target

area deployed in a random position within the environment. The first set of exper-

iments acts as benchmark, in order to evaluate the maximum level of performance

the evolved controllers can achieve in this scenario. At the same time, investigations

are carried out to identify the proper encoding for the input information to the neu-

ral network controllers. Then the obstacles are introduced into the environment and

a corresponding obstacle avoidance ability is evolved for the MAVs. In addition, a

further challenge is added to the model introducing a target capable of moving away

from an approaching aircraft. Finally, an experimental setup requiring coordinated

behaviour (i.e. two aircraft reaching the target, either static or moving, at the same

time) achieved through implicit communication is developed.

The second computer model, covered in chapter 6, is again dedicated to the

Evolutionary Robotics approach. The scenario is now more complicated than the

previous one. Despite the fact that no obstacles are deployed into the reference

environment, the three-dimensional nature of the new simulator makes the control

task significantly more challenging than before. Apart from just performing yaw

manoeuvres, the MAVs can now pitch and roll also. With this computer model we

want to understand how far we can stretch the model discussed in chapter 5. Thus

the same experiments carried out in the 2D simulator are performed.

Finally, the last simulator developed can be seen at work in chapter 7. This com-

puter model allows for experimentations on flocking, implementing among others a

customised version of the original Reynolds’ algorithm. The flocking algorithm is

tested in simulation and the results obtained are reported. A slightly modified ver-

sion of it is also evaluated on physical robots, namely a fleet of swinglet MAVs which

we were able to use thanks to a collaboration with the Laboratory of Intelligent Sys-

tems of the EPFL. The chapter also provides a detailed look into the experiments

carried out on waypoint navigation and leader-following behaviour, both in simula-

170

tion and on the real robots. The principal aim of these investigations is to verify to

what extent the controllers we have developed can be smoothly applied to physical

MAVs.

4.6.1 Defining “success”

When dealing with Evolutionary Robotics it is common, at the end of the evolu-

tionary process, to obtain populations of controllers that amongst them perform in

different ways. For simple tasks, the evolutionary algorithm (assuming, of course, a

proper design in terms of fitness function chosen and parameters associated to the

evolutionary algorithm) can generally lead to a quite uniform distribution of “skills”

amongst the individuals belonging to the last generation. In more complex scenarios

instead, it is not unusual to find just a few individuals successfully coping with the

task while the others fail, at various levels, in doing that. This is not a problem,

anyway, as most of the time we can discard all the controllers we do not like and

just extract the best one out of the bunch.

For this reason, across the various Evolutionary Robotics experiments presented

in the next two chapters we will mainly focus on one single statistic, which is the best

success rate, i.e. the success rate scored by the best individual in the population

at any generation across the various tests it is subject to. Ideally we would like to

obtain a 100% success rate in every scenario (and, as we will see, most of the time we

managed to reach this value), but considering several factors (how our simulations

are affected by elements of randomness, how the controllers were tested only a few

times each in order to obtain an evolutionary process fast thus sacrificing accuracy,

etc.) for the purposes of the research described in this thesis we have decided to

arbitrarily set the threshold to 90%. Although far from the ideal 100%, the value we

have chosen looks good in comparison to what can be found in the literature. Just to

give the reader an idea, in the work on UAV automated forced landing presented by

Eng and colleagues [102] in 2007 (one of the few that poses a great deal of attention

on the concept of success rate, although not defining any threshold to discriminate

between the outcome of their experiments), the score they achieved was just 52%.

171

Things are slightly different for chapter 7 instead. The work presented in there

can be seen as a proof-of-concept, which is used to demonstrate how controllers like

the ones we designed via the evolutionary approach can be applied, smoothly and

successfully, to a real MAV. Therefore in that chapter there will be no measures of

success/failure employed.

4.6.2 On the comparison with alternative design method-

ologies

What we are interested in demonstrating throughout this thesis is mainly how the

Evolutionary Robotics approach, combined with elements typically found in other

fields (as for example Multi-Agent Systems), can be considered a serious alternative

to traditional design methodologies when it comes to the development of autonomous

controllers for flying robots. Thus we do not intend to demonstrate herein a poten-

tial superiority of our approach in comparison to those arisen from decades of studies

in control theory, but simply to point out that the latest technological developments

have brought a new competitor into the field. A competitor which not necessar-

ily performs better than human designers when the task the controller has to deal

with can be solved analytically but, at the same time, one that has the potential

for coping properly with tasks that are too complex for traditional methodologies.

This the reason why in the next chapters the Evolutionary Robotics controllers pre-

sented will not be compared with alternative control systems (e.g. neural networks

trained via back-propagation, or analytical control theory models). Furthermore, a

strict benchmark comparison with alternative methods would not be possible given

the dynamic and variable trajectories followed by the simulated MAVs to reach a

dynamic, moving target. Back-propagation, for example, would require the fixed,

ad-hoc definition of the trajectories to reach the target, and these trajectories de-

pend on other agents’ and target’s behaviours. One might argue that an analytical

model could be employed to generate a pseudo-teaching input (the optimum trajec-

tory to follow under certain conditions), but there would be a clear issue concerning

generalisation. A neural network controller trained in this way would likely be able

172

to follow a pre-determined flight path, thus loosing the typical flexibility offered by

such controllers (while, on the other hand, no obvious advantages are visible).

Chapter 5

Simulation Experiments in Urban

Layouts

Within this chapter we describe the first of the three computer models we have

developed for the experimental part of the research presented in this this thesis.

The software simulator upon which this chapter is centred on implements a sim-

ple two-dimensional multi-agent model which focuses on high-level MAV navigation,

thus ignoring all the aspects related to aerodynamics and flight stabilisation that

are assumed to be taken care of by an autopilot system.

The approach we have implemented falls into the category of reactive strategies

(see section 4.1), and relies on a mixture of local and global information that the

MAVs use in order to continuously modify and adapt their behaviour attempting to

satisfy the requirement of the mission they are involved in.

5.1 Software simulator

As we have mentioned in previous chapters our approach, relying on Evolution-

ary Robotics, requires the use of a computer simulator for the evolution of the

autonomous controllers. The need for a computer simulator in the context of Evo-

lutionary Robotics should not be interpreted as a dogmatic view. It has in fact

been challenged both at the early stages of the field (see for example the pioneering

researches of Urzelain & Floreano [373], and Watson et al. [387, 388]), and in recent

175

times thanks to the work by Eiben and colleagues [99] focused on online onboard

evolution. Online evolution can be considered a valid candidate for the design of

autonomous controllers for land-based robots, but for obvious reasons it can not

be easily applied to the aerial robotics domain. While a wheeled robot moving in-

side an arena is free to make any sort of “behavioural mistake” and, most notably,

it can generally stop at any time waiting for the controller to elaborate the next

movement (or for the controller to evolve in response to changes into the scenario),

things are not as easy when the reference robot is an aircraft. Inside an arena, a

wrong movement made by a small wheeled robot as an e-puck or a Khepera will just

end up most of the time in the vehicle harmlessly touching the rails that delimit

the boundaries of the environment. A mistake made by an aircraft flying over an

open environment could potentially be much more dangerous, both for the robot

itself (who could crash resulting in a serious hardware damage), and for the safety

of other agents possibly sharing the same environment with the robot1. Obviously,

depending on the configuration of the MAV robot used, it might frequently be the

case that the robot can not even stop at mid-air without incurring in a stall, making

even more problematic the adoption of an online evolution approach and requiring

a much more accurate planning of every single movement.

The structure of the software simulator developed is quite simple from a “the-

oretical” point of view, as it consists in a computational model implementing a

two-dimensional multi-agent system which runs in discrete time steps.

From a software perspective instead, the simulator consists in a C++ applica-

tion, relying on the Qt libraries2 for the graphics part and in the Neural Network

Framework (NNFW3) for the management of neural networks-related aspects. As

all the instruments used, from the C++ compiler to the external libraries, are open-

source and multi-platform, the application can be freely distributed4. Furthermore

1It is true that, due to safety reasons, experiments in aerial robotics are typically carried out
within isolated areas to ensure that they do not put human beings at risk. Although this does not
automatically exclude the risks that human operators are subject to.

2http://qt.nokia.com/products/
3http://laral.istc.cnr.it/laral++/nnfw/
4The source code can be downloaded from this web page: http://www.tech.plym.

ac.uk/soc/research/ABC/plymav/Communication_and_Distributed_Control_in_
Multi-Agent_Systems/Downloads.html

176

Figure 5.1: Screenshot of the 2D simulator in a scenario which includes obstacles

the sources can be compiled and executed on all the most popular operating systems

available on the market5.

A screenshot of the application, running on Mac OS X, is presented in Fig-

ure 5.1. The main window shows the simulation environment, including in this case

building/obstacles (marked in red, see section 5.4.2), and highlights an “enclosed

area” in the centre (represented in yellow). From a technical point of view the simu-

lated environment has been implemented as a QGraphicsScene6 on which operates a

QGraphicsView 7 widget. On the right-hand side of the application window there are

various elements the user can interact with. Looking closely, on the top right corner

we can find a QTabWidget element8 containing three tabs inside (see Figure 5.2):

• Evolution parameters : this tab contains all the parameters related to the con-

figuration of the neural network controller (although the user can only modify

5Successful tests have been carried out on Microsoft Windows XP, Ubuntu Linux 10.04 and
11.04, Mac OS X 10.5.x, 10.6.x., and 10.7.x

6http://qt-project.org/doc/qt-4.8/qgraphicsscene.html
7http://qt-project.org/doc/qt-4.8/qgraphicsview.html
8http://qt-project.org/doc/qt-4.8/qtabwidget.html

177

the number of neurons in the hidden layer; different versions of the simulator

have been compiled to cope with alternative neural network topologies) and

of the evolutionary algorithm. Concerning the latter, the user can select: the

number of evolutionary seeds (or “runs”) to perform; the number of gener-

ation to evolve during each seed; the number of swarms/teams to use (i.e.

the population size); the number of tests to be performed on each team when

evaluating its fitness. Furthermore, the user can decide whether to use or not

the mutation operator. In case he desires to use it, he can select both the

associated probability pm (see section 2.4.5) and the magnitude of the modi-

fications to be operated (the software automatically divides by 2 the value x

inserted by the user, and uses [−x
2
; x
2
] as the range for the mutation operator);

• Evolution (live): when an evolutionary process is started the user can monitor

how it is progressing from here. This tab shows: the number of the current

evolutionary run; the number of the generation currently evolved; the number

of the MAV team under examination; the number of the current test; the

number of MAVs still in “operative” state and the number of tests concluded

successfully so far for the current team;

• Testing (live): the testing tab gets activated when the user loads an already

evolved controller from the memory and puts it under “examination”. This

tab simply shows the number of the current test, how many tests so far have

achieved success and how many MAVs are still operative in the current test.

On bottom of the QtTabWidget there is a series of checkboxes (implemented

using Qt’s QCheckBox 9 class) that the user can use to modify the level of details

displayed by the simulator and, in turn, the speed of the evolutionary process.

• Graphics view : this checkbox is used to enable/disable the graphics in the

simulator. When disabled the main application window turns white;

• View background : active only when “graphics view” is enabled, this checkbox

allows to display/hide the background picture on the main application window;

9http://qt-project.org/doc/qt-4.8/qcheckbox.html

178

(a) (b) (c)

Figure 5.2: Screenshots of the three tabs included in the QtTabWidget element of
the application main window: 5.2(a) Evolution parameters, 5.2(b) Evolution (live),
5.2(c) Testing (live)

• View statistics : this checkbox is used to display/hide the statistics in the

“Evolution (live)” tab;

• Manual speed control : enables/disables the combo box which is used to control

the speed of the simulator;

• Pause the simulation: puts the simulator on pause.

These settings affect the speed of the evolutionary process as they can minimise

the time the CPU has to dedicate to tasks that are not of fundamental importance for

the evolution. Additional “tricks”, different among them depending on the operating

system used, also provide several advantages in terms of speed. Both on Windows

and Linux, for example, minimising the application window dramatically reduces

the time needed to evolve the required number of generations. On Mac OS X the

simple minimisation of the application window has a limited effect on the speed of

the evolutionary process; hiding it instead (cmd + h shortcut) leads to a massive

performance boost.

The simulator can also be slowed down by using the “manual speed control”

combo box (a QComboBox 10 item), which is set by default on the maximum speed

10http://qt-project.org/doc/qt-4.8/qcombobox.html

179

possible (“Normal”, index 0). Alternative options are “Slow” (index 1), “Very slow”

(index 2), and “Extremely slow” (index 3). To reduce the simulation speed the

software uses at every time step a for loop in which simple mathematical operations

are computed index ∗ 10, 000, 000 times.

An additional feature of the simulator consists in the zoom slider (technically a

QSlider11 object). When the graphics is enabled the user can zoom in and out the

simulation environment using that slide bar.

Finally, in the bottom right corner there are the control buttons (QPushBut-

ton12). Using these buttons the user can either start/stop a new evolutionary pro-

cess, or load and test an already evolved controller from the memory. The user can

stop an evolutionary process at any time and, in case he does it before the evolution

has reached the last generation scheduled, he is offered the possibility of saving the

individuals belonging to the current generation in order to restart the evolutionary

process later on without loosing the progress achieved. The individuals are saved

into dedicated XML files using the NNFW’s saveXML13 method, which produces

files as in the extract which follows:

<!DOCTYPE nnfw-xml>

<nnfw version="1.1">

<neuralnet>

<cluster numNeurons="12" type="BiasedCluster" name="outL">

<accumulate>false</accumulate>

<inputs>-0.200014 -0.106269 -0.279251 0.195201 0.946954

0.0989379 -0.387646 -0.399544 0.286963 -0.625932 -0.613954

0.350006</inputs>

<outputs>-0.166817 0.0377938 0.0972221 -0.15462 0.807336

0.246236 -0.3278 -0.275734 -0.166989 -0.570402 -0.590832

0.220164</outputs>

11http://qt-project.org/doc/qt-4.8/qslider.html
12http://qt-project.org/doc/qt-4.8/QPushButton.html
13http://laral.istc.cnr.it/laral++/nnfw/api/namespacennfw.html

180

<outfunction type="ScaledSigmoidFunction">

<lambda>1</lambda>

<min>-1</min>

<max>1</max>

</outfunction>

<biases>-0.569158 -0.0649201 1.3824 0.922145 0.497208

0.270856 -0.494826 -0.594868 -0.146624 -0.311014 1.13855

0.104204</biases>

</cluster>

<linker from="inL" type="DotLinker" to="outL" name="link">

<weights>-0.943444 -0.297059 -0.813026 -0.763109

0.843994 0.212695 0.822901 0.336799 -0.581674

0.787711 -0.551788 0.604551</weights>

</linker>

<inputs>inL</inputs>

<outputs>outL</outputs>

<order>inL link outL</order>

</neuralnet>

</nnfw>

To understand the above extract it must be taken into account how NNFW

implements neural network. This library decomposes any neural network in sets of

clusters and linkers. Clusters are groups of neurons that share the same transfer

function. Linkers are the connection weights linking two or more clusters together.

In the example published we can see the definition of a cluster, of a linker, and the

setup of the proper update order for the entire network (i.e. the direction of the

data flow).

181

5.1.1 Common features of all simulation setups

The simulator introduced in the previous section has been used to implement several

different experimental setups. In this paragraph we describe the main characteristics

they share while we will analyse in details the individual differences when introducing

the different scenarios later on.

The computer model has been built with distributed control and group behaviour

in mind. This is reflected in the employment, in every experimental scenario, of MAV

teams (with a fixed group size of four) where each individual is endowed with its

own controller, which is identical to the ones used by its teammates.

The domain where the simulations take place is a rectangular area with size

710x760 pixels (px) which is a 2D representation of the Canary Wharf financial

district in London. MAVs are modelled as green squares with a side length of 2px.

The fact that the flight behaviour we are simulating is a fixed-wing airplane-like

motion adds the constraint for the MAVs of always being in movement. The speed

is assumed to be constant: during each time step all of the simulated aircraft move,

sequentially, of a certain amount of pixels along their heading.

The task the MAVs have to perform resembles a classical “search and hit” sce-

nario. At the beginning of a test, an “enemy” target (represented as a red square

with a side length of 1px) is deployed in a certain position inside the environment.

Starting from the four corners of the environment and facing its centre, the MAVs

have to find their way to the target. To conclude the task successfully, one of the

aircraft needs to perform a certain operation (represented as the activation of a

Boolean output unit of its controller) when it is close enough to the target (2.48px

or less), in which case the latter would be considered “hit”.

A test ends when the target has been hit or no MAV within the team currently

tested is operative anymore. A MAV will stop flying (thus becoming non-operative)

if it activates its “end-operation” Boolean unit (which can therefore only be activated

once per test by each MAV), if it attempts to cross the environment boundaries,

if it collides with a teammate (in which case both the MAVs would become non-

operative), or if it runs out of energy. The decision to limit the number of times

182

the aircraft can activate their “end-operation” neurons to just one has been made

in order to ensure the task requires a high degree of precision.

The behaviour of the MAVs is governed by an embedded autonomous controller,

implemented as a neural network (see section 5.2.) This type of controller processes

the information available to generate a yaw manoeuvre to be executed by the con-

trolled aircraft. The information is related to the position of the target, and is

received in form of relative polar coordinates by the MAVs, i.e. as distance and

steering angle required to align with the target. In other words, the robots are not

capable of what is called Automatic Target Acquisition (ATR). Because of this they

do not need to execute such an intensive computational task (even if the job could

be effectively tackled cooperatively, as demonstrated by Dasgupta [84]) and can ded-

icate all the available computational resources to alternative tasks. Our assumption

is based on the presence of a satellite system that constantly monitors the target

and broadcasts real-time information about its position to all the team members.

In this way the MAVs, equipped with a GPS receiver that allows them to compute

their position and an absolute heading, can easily calculate their distance from the

target matching the two data sources gathered. A simple compass can also allow

the MAVs to determine the relative direction of the target. It must be noted that

this hypothesis has been made in order to simplify the development of the model

and it is not to be considered in contrast with the idea of a reactive non-centralised

strategy. As we have discussed in previous chapters, one of the advantages of re-

active strategies over those based on deliberative or replanning approaches is based

upon the fact that they implement a distributed control system. As a result of this

the MAVs are not dependent upon a central element. Many alternative hypotheses

could be postulated, thus eliminating the need of a system with an “bird’s eye view”

over the entire scenario. For example, the system we have developed would work

in the same way if we imagine that no GPS systems are available, but the MAVs

perceive instead a radio signal emitted by the target or by a transmitter placed

nearby the target.

At the end of every generation the simulator saves a series of statistics into

183

distinct files:

• Alive: average number of MAVs per team alive at the end of a test;

• Collided : average number of MAVs collided with each other during a test;

• Completion attempts : average number of MAVs activating their end-operation

unit during a test;

• Crashed : average number of MAVs crashed against a building during a test;

• Energy remained : average amount of energy left to the MAVs when a test

ends;

• Fitness (average): average fitness value for the entire population;

• Fitness (maximum): best fitness value across the entire population;

• Out of bounds : average number of MAVs that attempted to exit the boundaries

of the environment during a test;

• Out of energy : average number of MAVs running out of energy during a test;

• Success rate (overall): overall percentage of tests concluded successfully by

the individuals of a given generation;

• Success rate (maximum): percentage of tests concluded successfully by the

best team in a given generation;

• Target distance (average): average distance between the target and the MAV

which was the closest when it activated its end-operation unit during a test

(average value for the entire population);

• Target distance (minimum): average distance between the target and the MAV

which was the closest when it activated its end-operation unit during a test

(minimum value for the entire population).

A script automatically generated by the simulator imports all the statistics into

the Matlab R©14 environment, ready for plotting and further analysis.

14http://www.mathworks.co.uk/products/matlab/

184

5.2 Neural network controllers

The autonomous controllers have been implemented as neural networks (as the one

depicted in Figure 5.3), for the most part feed-forward ones.

The networks are fully connected, meaning that all the neurons in one layer have

synaptic connections to all the neurons in the following layer. Since the network is

a made up of thee layers (or two layers according to the interpretation provided by

other authors) this refers to the connections from the input to the hidden layer, and

to those that connect the hidden with the output layer.

Figure 5.3: Example topology of a typical NN controller. In this case using four
input neurons (one for encoding in a discretised way the MAV-target distance, three
for the MAV-target angle), 10 units in the hidden layer, and two output neurons
(yaw and “end-operation” respectively) [D: discrete, C: continuous, B: Boolean]

It is worth highlighting how all the neurons employed in this network just use

summation as aggregation function. It means that the activation function f(x) for

each neuron can be formalised according to Equation 5.1, where b0 represents the

bias associated to the output neuron, n is the number of neurons that contribute to

the activation of the given one, xi is the activation value of the i-th neuron, and wi

is the weight associated to the connection between the i-th neuron and the output

one. g() is generic indicator of a further transformation operated on the sum of all

the inputs, which depends on the specific neuron under examination.

185

f(x) = g(b0 +
n∑
i=0

xiwi) (5.1)

The input neurons are fully connected to the neural network hidden layer, made

of a certain number of continuous neurons (which differs in the various setups elab-

orated) activated through a log-sigmoid function (slope 1.0) of which the output

values are in the range [−1.0; 1.0] (see Equation 2.14).

The neural network output layer consists of just two neurons, receiving incoming

connections from the neurons belonging to the hidden layer only. One output unit is

continuous and gets activated through the same log-sigmoid function as the neurons

of the hidden layer. This neuron is in charge of controlling the flight of the MAV,

generating yaw manoeuvres to be executed by the embedded autopilot system. The

value generated is scaled according to the estimated maximum turn-rate of the

aircraft simulated. For example, if we assume the turn-rate of the MAV being

+/ − 20◦ in the time unit, the value generated by this output neuron, originally

in the [−1.0; 1.0] range, must be translated into the range [−20.0◦; 20.0◦]. The

other output unit is a Boolean neuron (activated through a step function with a 0

threshold) which, when it turns to 1, causes the MAV to activate the “end-operation”

procedure.

As stated before, the input arrives both from sensors embedded on the aircraft

and by an overall monitoring system. The next section introduces the issue of the

encoding, which will be further analysed when describing the first set of simulations

carried out.

5.2.1 Encoding of the input information

The various experimental setups involve different types of information available to

the aircraft in order to process its flight manoeuvres. This means that different

neural network structures will be used as well. This is because of the different

information provided to the network, partly because of the different levels of com-

putational capabilities required to the controller to compute the data received.

As neural networks work at their best when the input used reflects certain char-

186

acteristics [280], a key aspect of making a model such as the one we have developed

successfully relies upon using the proper type of encoding. As we will see later,

the first set of Simulations (labelled “A”) is specifically aimed to identify the right

encoding system.

5.3 Evolutionary algorithm

The evolution towards a controller able to perform the desired task is made possible

by the use of a genetic algorithm (see section 2.4.5) integrated into the computer

simulator developed.

An initial population of 100 controllers is created with randomly assigned con-

nection weights and biases, uniformly distributed within the [-1.0; 1.0] range15. Each

controller works at a team-level, i.e., it is assigned to 4 MAVs that together form a

team. The genome consists of a vector of real values directly encoding connection

weights and biases values, so no binary genomes (as it is usual instead in GA liter-

ature) are employed. Every controller is tested a certain number of times with the

target deployed in different positions and the MAVs starting with varying position-

s/headings.

At the end of each generation (i.e. when all 100 controllers/teams have been

tested) the 20 individuals that have performed the best scores according to the

specific fitness function used are selected for reproduction. Each of the selected

controllers generates 5 copies of its genome, on which the mutation operator is then

applied. Each gene of the copied genome is modified, with probability 0.25, by a

amount within the [−0.5; 0.5] uniform probability distribution. The only exception is

for the best individual of the current generation, which generates a copy of its genome

without any modifications (according to a procedure called “elitism” [87]). The

resulting 100 individuals will constitute the new population of the next generation.

The evolutionary process lasts for a fixed number of generations and it is repeated

several times with the results coming from all runs averaged together in order to

15The proper setting of the values that connection weights and biases can assume at the beginning
of the evolutionary process is critical in order to avoid the so-called “bootstrap issue” [264].

187

obtain more robust data about the generated trends.

5.4 Experiments

This section illustrates the four main scenarios that have been tested, as well as the

details of each experimental setup. The four scenarios are of increased complexity

in the sense that they require increasingly sophisticated controllers for the MAVs to

succeed. In the first one a static target is deployed inside an obstacle-free environ-

ment and one of four MAVs has to navigate to it and perform a certain task once got

there (generalised as the activation of a “end-operation unit”). The second setup is

similar to the previous one, except for the presence of obstacles that the MAVs can

detect and have to avoid. In the third scenario the target is capable of moving away

from an approaching MAV, which has in turn to chase it. In the fourth and final

experimental setup two MAVs are required to approach the target (which can be

either static or capable of moving) at the same time in order for the test to succeed.

An additional set of simulations, that do not introduce a new experimental setup

but just some modifications on the functioning of the evolutionary algorithm, will

be described towards the end of the chapter

5.4.1 Basic scenario (simulations A)

The first set of experiments carried out, reported in Ruini et al. [319], aims to identify

the most appropriate encoding for the sensorial input. Eight different simulations

(A1-A8) have been elaborated, testing various encodings and the related neural

architectures. The reference environment is the one described at the beginning of

this chapter and no obstacles are present.

In simulation A1 the distance between the MAV and the target, which is mea-

sured in pixels by the simulator, is discretised according to the conversion criterion

outlined in Table 5.1, which is valid for simulations A1, A2, A3, and A4.

As the table shows, and somehow counterintuitively, short distances are asso-

ciated to high activation values and vice-versa. This solution is often employed in

Evolutionary Robotics (see for example [224] or the works cited in [280]) in order to

188

(a) (b)

Figure 5.4: Discrete encodings of the MAV-target angle (assuming the aircraft facing
North): (a) using a standard Boolean representation of the sub-spaces; (b) using
Gray code instead

Table 5.1: Discretised encoding of the MAV-target distance

Distance (px) Discretised value
1, 040 ≥ d > 900 0.0
900 ≥ d > 800 0.1
800 ≥ d > 700 0.2
700 ≥ d > 600 0.3
600 ≥ d > 500 0.4
500 ≥ d > 400 0.5
400 ≥ d > 300 0.6
300 ≥ d > 200 0.7
200 ≥ d > 100 0.8
100 ≥ d > 2 0.9
2 ≥ d ≥ 0 1.0

make more likely the evolution of certain behaviours. A common example concerns

obstacle-avoidance behaviours. In that case the designer generally wants the neural

network to generate a motor response which is stronger as closer an obstacle is to

the robot. Obtaining that is easier if being close to an obstacle feeds a “high” value

into the neural network controller and the power of the motor response positively

correlates with high network outputs. In this case things are not much different as

we want the MAVs to activate a specific Boolean unit (i.e. to bring its activation

value to 1) the closest as possible to the target. The very same principle is also at

work with many robot sensors. The infra-red sensors installed on the Khepera and

e-puck robots, for example, emit beams of infra-red light and measure the quantity

189

of reflected light, which is higher the closer the robot is to an obstacle.

The space surrounding each MAV is divided into 8 sub-fields depending on its

current heading (see Figure 5.4). The first one includes all the angles equal to or

greater than 347.5◦ and lower than 22.5◦; the second one comprises all the values

between 22.5◦ (included) and 67.5◦ (excluded), and so on. These sub-fields are

numbered progressively according to a Boolean encoding, as shown in Figure 5.4(a).

At any time, the direction in which the target lays can be matched with one of these

sub-spaces. The three-digit value representing that portion of the space is fed into

the neural controller via an equal number of neurons.

In simulation A2 the encoding of the angle is the same as in simulation A1, but

how it varies is the way in which the sub-fields are numbered, not according to a

Boolean one anymore, but to a Gray code-based [136] instead (see Figure 5.4(b)).

In simulation A3 the angle is encoded through two continuous values in the

[−1; 1] range, respectively corresponding to its sine and cosine (a redundant approach

successfully employed in many researches, as for example in [34] and [378]).

In simulation A4, the same angle is represented instead by means of a single

neuron that assumes the raw original value included between 0◦ and 360◦, after its

normalisation into the [0; 1] continuous range (0◦ remains 0, 360◦ becomes 1).

Simulations A5, A6, A7, and A8 are “copies” of Simulations A1, A2, A3, and

A4 respectively, but they encode the MAV-target distance not in a discretised way,

rather normalising it into the [0; 1] range (where 0 corresponds to the maximum

distance possible, which is 1, 040, and 1 to the minimum one).

Table 5.2 summaries the distinctive characteristics of simulations A1-A8.

The evolutionary algorithm runs for 500 generations. The teams/controllers are

tested four times each, with the individual MAVs starting every test with a storage

level amounting to 5, 000 energy units (EU). When flying their energy consump-

tion amounts to 3EU per time step, which allows them to move 2.14px along their

heading, the turn-rate per time step is [−10◦; 10◦] instead. At the beginning of each

test the target is deployed in a different position across the environment, while the

MAVs use fixed starting positions but have slightly different initial headings from

190

Table 5.2: Summary of the main characteristics of simulations A

Simulation MAV-target distance encoding MAV-target angle encoding
A1 Discrete 3-digits (Boolean)
A2 Discrete 3-digits (Gray code)
A3 Discrete Continuous
A4 Discrete Sine/cosine
A5 Continuous 3-digits (Boolean)
A6 Continuous 3-digits (Gray code)
A7 Continuous Continuous
A8 Continuous Sine/cosine

test to test. Table 5.3) shows all the details about the initial setup of the various

tests.

Table 5.3: Simulations A: initial deployment of MAVs and target (0◦ is considered
the heading for a MAV facing North, then the angle is measured clockwise)

Agent X coord. Y coord. heading (α)
Target [0; 710] [0; 760] N/A
MAV0 20 20 135◦ ± 10◦

MAV1 690 20 225◦ ± 10◦

MAV2 20 740 45◦ ± 10◦

MAV3 690 740 315◦ ± 10◦

Five evolutionary runs (i.e. reinstatements of the evolutionary process with a

different seed provided to the random number generator, RNG), each of them 500

generations long16, have been run and the results obtained were averaged together.

The fitness function that has been used to evaluate and compare the controllers

used by the different teams is shown in Equation 5.2, where: α is the average distance

(measured in pixels) between the target and the team member who has activated its

“end-operation” neuron the closest to it in any test (that has been calculated based

upon the four tests performed); β is the average amount of energy retained by the

MAV (also calculated based upon the four tests); σ is the number of tests concluded

successfully by the given team; ε is the total number of MAVs still operative after

16In order to determine the number of generations to evolve we have not relied on any theoretical
notion. Rather we have preferred to stick to an empiric approach, i.e. to carry out some preliminary
analysis, looking at how long it takes to the average and maximum fitness to reach a stable state,
and then using this (or a slightly higher) number of generations.

191

the four tests have finished (maximum 12, as at least one of the MAVs must become

non-operative for a test to be considered successful.)

f = −α +
β

50
+ 50σ + 5ε (5.2)

Amongst all of these parameters, the two with the highest relative importance

at the beginning of the evolutionary process are α and σ. The fitness function used

generally returns negative values for the individuals of the first generations, as they

tend either to do not activate their “end-operation” unit (which causes α, in case

no MAVs activate their neuron, to be set on the maximum value possible given

the environment size, i.e. 1, 040) or to do so when far from the target (making

α assuming values higher than 0, not compensated by the positive parameters of

the formula). Once selective pressure makes the controllers capable of approaching

the target effectively, the σ parameter kicks in, advantaging those MAVs activating

their end-operation unit when close enough to the target (i.e. within a 2.48px

distance). Finally, when most of the controllers can successfully reach the target

and perform the required operation at the proper distance, an additional source of

selective pressure is given by parameters β and ε, whose relative importance increases

favouring teams that can perform the task in the most effective way possible (i.e.

consuming the least amount of energy possible and with no unnecessary “losses”).

Results

We present in detail the results obtained by the second of the simulations that were

run - A2 - just to give an example of how the statistics listed in paragraph 5.1.1 are

collected and how they should be interpreted.

Figure 5.5 shows the average and maximum fitness values registered across the

generations17. Both lines follow a similar growth pattern, although with different

steepness. The average fitness increases dramatically over the first 50 generations,

17The attentive reader should notice that the two lines plotted in the graph do not consist of
500 data points each. To make the graphs more clear we have decided to only plot 50 data-points
in total: the first one corresponds to the average of the first 50 data-points, the second one to the
average of the [51st; 100th] data-points interval, and so on. This approach will be followed across
the entire thesis.

192

because of the quick evolution from controllers behaving randomly to neural net-

works approximately performing the task. Then the growth slows down until it

stabilises when the 300th generation is reached. Looking at the second parameter,

i.e. the fitness scored by the best individual in the population at a given generation,

it can be seen how the best possible value in this experimental setup is reached in

less than 50 generations and then maintained until the end of the evolutionary pro-

cess thanks to the elitism operator. Of course, such a quick evolutionary dynamics

means that the search space created by the fitness function we decided to use is

fairly simple for the genetic algorithm to explore.

0 50 100 150 200 250 300 350 400 450 500
−200

−100

0

100

200

300

400
Average and maximum fitness

Generations

F
it
n

e
s
s
 v

a
lu

e

Average fitness

Maximum fitness

Figure 5.5: Simulation A2: average and best fitness (average of 5 evolutionary runs)

Figure 5.6 illustrates the overall percentage of tests concluded successfully at

each generation. The shape of this curve resembles the one we have just seen in

Figure 5.5 for the average fitness. This is easily understandable, as they are es-

sentially two different ways of looking at the same phenomenon (which is not true

for the maximum fitness statistics, as it tells us instead whether a team managed

to complete all the tests successfully or not). At any generation a total of 400

tests is carried out, thus the final value obtained, about 95%, roughly corresponds

to 380 tests successfully executed. There are no theoretical constraints preventing

193

this value from reaching the 100% threshold. This did not happen in this scenario

most likely due to the high mutation rate used ([−0.5; 0.5] on 25% of the connection

weights/biases), which often introduces disruptive modifications in the controllers.

The results have nonetheless been considered satisfying enough, considering that an

aggregate 95% values indicates that most of the evolved controllers easily perform

the required task 100% of the time. Reducing the mutation rate would most likely

increase the amount of time required for the evolutionary algorithm to identify a

solution, without providing at the end of the day any benefit (as even a single well

working controller would be enough for our purposes).

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100
Percentage of tests concluded successfully

Generations

P
e

rc
e

n
ta

g
e

Figure 5.6: Simulation A2: percentage of successful tests (average of 5 evolutionary
runs)

Figure 5.7 focuses on the moment in which MAVs activate their end-operation

unit, showing the average and minimum distance from the target. As it can be seen,

at the beginning of the evolution most of the controllers do not yet know how to use

the end-operation unit, consequently they activate it more or less randomly. But

thanks to the fitness function used, which rewards the careful use of that unit, the

average distance decreases quite quickly, converging to the minimum one.

Figure 5.8 shows the amount of energy saved by the “average best” MAV at every

generation. This statistic is collected by measuring the energy left to the first MAV

194

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250
Av. and min. dist. b/w the target and the closest MAV having operated its end−operation unit

Generations

D
is

ta
n

c
e

 (
p

ix
e

ls
)

Average distance

Minimum distance

Figure 5.7: Simulation A2: average and minimum distance between the target and
the MAV having operated the end-operation unit closest to it (average of 5 evolu-
tionary runs)

to activate its end-operation neuron when close enough to the target during each

test. Then the average value is calculated across the 100 teams. As expected, the

plot shows a continuous increase in the performance of the controllers, that gradually

use less energy to complete the tasks they are assigned. At the beginning of a test,

the target is deployed in a random position in the ([0; 710]; [0; 760]) coordinates

range. On average the target will therefore be at the centre of the environment (in

the point of coordinates (355, 380)), 488.36px far from the MAVs at the beginning

of a test. The amount of 4, 575EU left, shown by the graph, means that the best

MAV in a team evolved for 500 generations uses on average 425 energy units to

reach the target. Considering that 1EU allows a MAV to fly for 0.93px, 395.25px is

the distance traveled by the best MAV on average. It might look counter-intuitive

that this value is lower than 488.36px, but this can be easily explained considering

that the statistics in Figure 5.8 take into account the best individuals at any test.

Being the best during a given test, knowing that the controllers that all the MAVs

within a team use are identical to each other, is often due to the luck of finding

themselves close to the target when the test begins.

195

0 50 100 150 200 250 300 350 400 450 500
4200

4250

4300

4350

4400

4450

4500

4550

4600
Av. energy amount left to the closest MAV having operated its end−operation unit

Generations

E
n

e
rg

y
 a

m
o

u
n

t

Figure 5.8: Simulation A2: amount of energy left to the MAV activating its end-
operation output unit closest to the target (average of 5 evolutionary runs)

Finally, Figure 5.9 shows what is the state of the MAVs belonging to a team at

the end of a “typical” test (which is the average of the 4 tests each team performs).

The “ideal” situation would consist of having one single MAV having activated its

end-operation unit and the other three still operative. The values shown in the plot

differ slightly from this theoretical optimum. First of all, we can see that about

1.5 MAVs activate their end-operation neuron during the test. That means that,

on average, two MAVs are required to have guarantee of success. Consequently the

amount of aircraft still operative when the mission has been successful is lower than

three. In this case it amounts to about 2.3. The remaining 0.3 is constituted by

MAVs becoming non-operative for different reasons, mainly exiting the environment

boundaries (which they can not perceive), or running out of energy. Furthermore, as

the MAVs are not equipped with any sensors to detect teammates, a small percentage

of collisions (which would mainly depend on the size of the reference environment

and it is relatively small in our scenario) is natural.

We can now perform a comparison between the eight experimental setups anal-

ysed in order to identify the best encoding to be used for this model. Among all of

those listed in the previous section, three of the most significant statistics are the av-

196

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5
End−test condition for the average MAVs team

Generations

N
u

m
b

e
r

o
f

M
A

V
s

Activated the end−operation unit

Out of bounds

Out of energy

Collided

Still operative

Figure 5.9: Simulation A2: condition of the MAVs at the end of the “average test”
(average of 5 evolutionary runs)

erage and maximum fitness, as well as the percentage of tests concluded successfully.

Our analysis therefore focuses on a comparison of those.

Figure 5.10 contrasts the average fitness values obtained in the different scenarios.

The same colour, but with different markers, has been used to plot the curves related

to simulations that share the same angle encoding but use a different system for the

distance (A1 and A5, A2 and A6, A3 and A7, A4 and A8). Looking at the graph

it is possible to see that Simulations A2 and A6 perform definitely better than all

the others, scoring at least 100 points more than their closest competitors. Looking

more generally, a trend can be identified according to which architectures A1, A2,

A3, and A4 seem to perform better (or at least equal) than A5, A6, A7, and A8

correspondents. This suggests that the discretised encoding of the MAV-target

distance makes the task easier to the neural controller. If the two kinds of encoding

score similar results with regard to A1-A5 and A3-A7, the advantages are more

evident contrasting A2 with A6, and A4 with A8. The comparison between A4 and

A8 also highlights two very different evolutionary patterns for which the author does

not have a proper explanation to offer.

The graph about the maximum fitness (Figure 5.11) provides less informative

197

0 50 100 150 200 250 300 350 400 450 500
−400

−300

−200

−100

0

100

200

300

400
F

it
n

e
s
s
 v

a
lu

e

Average fitness

Generations

Simulation A1

Simulation A2

Simulation A3

Simulation A4

Simulation A5

Simulation A6

Simulation A7

Simulation A8

Figure 5.10: Simulations A: comparison for the average fitness (average of 5 evolu-
tionary runs)

contents than the one we have just analysed, as four different architectures (A1, A2,

A5, and A6) equally manage to reach the maximum level of performance (about 350

points). Neural controller A3, A4, A7, and A8 seem instead to struggle, registering

significantly lower values.

Figure 5.12 confirms the findings we have been discussing so far, suggesting

that architecture A2 and A6 are those overall performing in the best way, with

an average success rate (percentage of tests concluded successfully) approximately

equal or greater than 90%. Decent results are obtained by A1 and A5 as well (about

75% of success rate at the end of the evolution) while A4 does not reach the 60%

threshold. The remaining three neural architectures, namely A3, A7, and A8 score

pretty marginal results.

Table 5.4 presents in a numerical form the same data presented in Figures 5.10,

5.11, and 5.12, focusing on the values at the end of the evolutionary process only

(average over the last 10 generations).

On the basis of these results (the best overall success rate achieved and the

highest average fitness, combined with a general trend suggesting the validity of

198

0 50 100 150 200 250 300 350 400 450 500
−50

0

50

100

150

200

250

300

350

400

F
it
n

e
s
s
 v

a
lu

e

Generations

Maximum fitness

Simulation A1

Simulation A2

Simulation A3

Simulation A4

Simulation A5

Simulation A6

Simulation A7

Simulation A8

Figure 5.11: Simulations A: comparison for the best fitness (average of 5 evolutionary
runs)

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Generations

P
e

rc
e

n
ta

g
e

Percentage of tests concluded successfully

Simulation A1

Simulation A2

Simulation A3

Simulation A4

Simulation A5

Simulation A6

Simulation A7

Simulation A8

Figure 5.12: Simulations A: comparison for the success rate (average of 5 evolution-
ary runs)

199

Table 5.4: Simulations A: resume of the main results (average of the last 10 gener-
ations, based on 5 evolutionary runs)

Sim. Av. fitness Max. fitness
Percentage of tests
concluded successfully

Max. success
rate [%]

A1 110.49 353.67 75.09 98.83
A2 315.18 354.56 93.46 100
A3 −152.46 287.64 11.68 32.59
A4 55.32 279.99 58.14 97.52
A5 111.66 353.82 75.33 99.02
A6 240.19 354.19 88.14 100
A7 −142.2 284.11 10.89 29.91
A8 −287.03 215.53 6.97 16.4

encoding the MAV-target distance in a discretised way), we have promoted the

architecture used in Simulation A2 as the one to be used as a basis for the following

extensions of the model.

Although, we should not overlook the fact that several architectures generated a

very good result for what concerns the best success rate, equal or at least very close

to 100% for five of the eight controllers tested. Our analysis has mainly focused on

the average values as these reflect very well how quickly and easily the evolutionary

process could find a solution to the problem faced, thus allowing us to make clear

distinctions between the different topologies. But if we look at the problem with

“more practical” eyes, there are five controller architectures (A1, A2, A4, A5, and

A6) that can cope pretty effectively with the task. exceeding the 90% threshold we

have defined in previous chapter.

5.4.2 Obstacle avoidance (simulations B)

The second set of experiments [319] introduces a tight grid of obstacles into the

environment. The obstacles act as no-fly zones for the MAVs, thus making the

task the teams have to tackle slightly more complex as the aircraft have to add

obstacle-avoidance behaviour to their target tracking capability.

200

Deployment of the obstacles

Eighteen obstacles have been deployed inside the environment in a way that matches

the location of the main buildings present in the Canary Wharf area taken as a

reference.

Figure 5.13: Overview of the obstacles distributed along the environment

The coordinates of all obstacles are denoted in Table 5.5 and their location is

graphically shown in Figure 5.13. It is worth mentioning (as we will sometimes

refer to absolute polar coordinates later on in this chapter) that the (0, 0) point lies

in the top-left corner of the figure. The coordinates of a specific “enclosed area”,

that MAVs can access only executing a “proper” obstacle-avoidance behaviour, is

portrayed in Figure 5.13 with a yellow colour can be seen in Table 5.6.

Selection of the proper sensors configuration for obstacle avoidance

In order to be able to avoid the obstacles, the MAVs need a sensorial apparatus

that enables them to perceive those and to react accordingly. The solution we

201

Table 5.5: Simulations B: (X, Y) coordinates of the obstacles present in the simu-
lated environment

Obstacle Width Height Starting X Starting Y Final X Final Y
0 130 82 180 44 310 126
1 130 82 180 150 310 232
2 95 190 408 38 503 228
3 55 230 643 17 698 247
4 110 90 280 213 390 303
5 90 95 231 263 321 358
6 83 93 417 266 500 359
7 133 213 577 247 710 460
8 50 95 109 403 159 498
9 90 140 231 400 321 540
10 90 142 419 392 509 534
11 45 88 74 498 119 586
12 49 38 274 564 323 602
13 100 55 244 602 344 657
14 35 18 430 534 465 552
15 90 123 420 552 510 675
16 33 59 387 620 420 679
17 53 171 592 482 645 653
18 44 65 213 698 257 763

Table 5.6: Simulations B: (X, Y) coordinates of the enclosed area

Width Height Starting X Starting Y Final X Final Y
84 289 328 308 412 597

have decided to use consists of a set of simulated ultra-sonic (US) sensors installed

onboard the aerial vehicles. Two questions immediately arise concerning how many

of these sensors to use on each MAV and in which direction to point them. To

address these two issues, the performances generated by four different configurations

of sensors (see Figure 5.14) have been compared in order to identify the best suited

one. The four configurations correspond to the number of simulation setups studied,

labelled B1, B2, B3, and B4 respectively.

In configuration B1, one single forward-facing US sensor is employed (see Fig-

ure 5.14(a)). Three sensors are used in setups B2, B3, and B4 instead. Configuration

B2 relies on one forward-facing sensor and two respectively oriented at +45◦ and

−45◦ respect to the aircraft heading (see Figure 5.14(b)). Setups B3 and B4 (Fig-

202

ures 5.14(c) and 5.14(d) respectively) vary the orientation of the two side-looking

sensors: ±30◦ in B3 and ±20◦ for what concerns B4.

(a) (b)

(c) (d)

Figure 5.14: The four different configurations of ultra-sonic sensors tested on the
simulated MAVs: (a) one single forward-facing US sensors (simulation B1); (b) one
forward-facing sensor, and two oriented at ±45◦ (simulation B2); (c) one forward-
facing sensor, and two oriented at ±30◦ (simulation B3); (d) one forward-facing
sensor, and two oriented at ±20◦ (simulation B4)

Each sensor returns a numeric value, which represents the distance between the

MAV18 and the closest obstacle detected, according to the discretisation criterion

illustrated in Table 5.7. The maximum distance the ultra-sonic sensors can spot

obstacles at is 30px19 and the readings are not affected by noise. Categories of

obstacles that MAVs can spot are the target, the teammates, the buildings, and the

environment boundaries also20.

18We assumed that the sensors are installed above the centre of mass of the aircraft rather than
on its nose, thus slightly affecting the readings at close range.

19Considering that in these simulations a MAV is 2px long, assuming 1px ≈ 25cm, 30px can
be roughly assimilated to 7.5m. Considering that inexpensive ultra-sonic sensors on sale on the
private market can easily cover up to 3m (see for example those sold by Parallax, http://www.
parallax.com/tabid/768/ProductID/92/Default.aspx) simulating more accurate sensors
capable of reading twice as far should not be considered a wrong design assumption.

20Allowing the MAVs to detect the environment boundaries is a choice made in order to accelerate
the evolutionary process avoiding that otherwise well performing MAVs could fail some tests due
to exiting the (invisible) boundaries of the reference environment.

203

Table 5.7: Simulations B: values returned by the simulated ultra-sonic sensors de-
pending on the distance to the closest obstacle perceived

Distance [px] Discretised value
d > 30 0.0

30 ≥ d > 27 0.1
27 ≥ d > 24 0.2
24 ≥ d > 21 0.3
21 ≥ d > 18 0.4
18 ≥ d > 15 0.5
15 ≥ d > 12 0.6
12 ≥ d > 9 0.7
9 ≥ d > 6 0.8
6 ≥ d > 3 0.9
d ≤ 3 1.0

Modifications to the neural network controller and to the simulation de-

tails

In order to accommodate and process the additional input information available to

the MAVs in this scenario, the structure of the autonomous controller has had to be

modified accordingly. Two new neural network topologies have been designed: one

specific for Simulation B1, the other three equivalently working for B2, B3, and B4.

These two new topologies present an additional number of input neurons corre-

sponding to the number of US sensors employed (1 in B1, 3 in B2, B3, and B4).

To process this information, more neurons have been inserted into the hidden layer,

which now contains 12 units in B1 and 15 in the alternative topology.

Figure 5.15 shows, from a graphical point of view, the topology of the neural

network controller employed in Simulations B2, B3, and B4.

For what concerns the general simulation details, to compensate the increased

difficulty of the control problem the navigation task has been made slightly easier,

increasing the MAVs turn-rate per time step (from [−10◦; 10◦] to [−20◦; 20◦]), and

reducing the amount of movement performed in the same time unit (from 2.81px to

2px). The energy consumption has been reduced accordingly, from 3EU to 2.14EU .

The fitness function (reported in Equation 5.3) has been subjected to minor

changes with respect to Equation 5.2 by increasing the relative importance of the ε

204

Figure 5.15: Graphical representation of the NN controller used in simulations B2,
B3, and B4. Its topology consists in 7 input neurons (1 for encoding the MAV-
target distance, 3 for the MAV-target angle, 3 for the ultra-sonic perception,) 15
units processing the information in the hidden layer, and two output neurons (yaw
and “end-operation” respectively) [D: discrete; C: continuous; B: Boolean]

factor (thus stressing the importance of performing the obstacle-avoidance behaviour

properly). This function still operates as the previous one, leading the evolutionary

algorithm to evolve the controllers step-by-step.

f = −α +
β

50
+ 50σ + 10ε (5.3)

Each MAV team is tested four times with the target deployed in randomly se-

lected positions within specific areas. Twice the target will be inside the “enclosed

area at the centre of the environment, surrounded by buildings and with narrow

entrances. Twice it will be deployed instead outside that area, on a point not closer

than 5px to an obstacle or to the environment boundaries. In order to increase the

generalisation capabilities of the model, apart from starting each test with different

headings, MAVs are now deployed in different positions. Table 5.8 shows the new

deployment rules used in this set of simulations.

Finally, the evolutionary process has been extended in duration and it now lasts

for 2, 000 generations rather than the previously used amount of 500, due to the more

205

Table 5.8: Simulations B: initial deployment of MAVs and target (0◦ is considered
the heading for a MAV facing North, then the angle is measured clockwise)

Agent X coord. [px] Y coord. [px] Heading (α)
Target (inside) [328; 412] [308; 597] N/A

Target (outside) [0; 710] [0; 760] N/A
MAV0 [21; 642] 20 135◦ ± 10◦

MAV1 690 [461; 739] 225◦ ± 10◦

MAV2 20 [21; 739] 45◦ ± 10◦

MAV3 (a) [21; 214] 740 315◦ ± 10◦

MAV3 (b) [258; 690] 740 315◦ ± 10◦

complex task which requires more “time” for the evolution of a controller properly

dealing with it.

Results

The main results obtained from this set of simulations are summarised in Table 5.9

for what concerns the three most critical parameters measured: average fitness,

maximum fitness, and success rate.

Table 5.9: Simulations B: resume of the main results (average of the last 10 gener-
ations, based on 5 evolutionary runs)

Sim. Av. fitness Max. fitness
Percentage of tests
concluded successfully

Max. success
rate [%]

B1 51.09 397.44 61.65 97.81
B2 257.27 413.53 86.34 100
B3 238.09 413.08 84.27 100
B4 257.62 413.55 87.62 100

Figure 5.16 contrasts the average fitness values obtained in the four experimental

setups. The first noteworthy observation that comes to the eyes is that simulation

B1 is the one which clearly performs the worst in the overall group. This outcome

was to some extent expected, since the employment of a single ultra-sonic sensor does

not allow the MAVs to know in which direction to turn when facing an obstacle.

This point is demonstrated by looking at Table 5.10 where it can be seen how

simulation B1 is the one in which the “casualty rate” is the highest due to MAVs

crashing against obstacles and attempting to exit from the environment boundaries

206

(respectively 0.99 against an average of 0.27, and 0.22 against 0.17). The other three

architectures (B2, B3, and B4) seem to perform in quite a similar way with slightly

more positive results provided by B4.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−150

−100

−50

0

50

100

150

200

250

300

F
it
n

e
s
s
 v

a
lu

e

Generations

Average fitness

Simulation B1

Simulation B2

Simulation B3

Simulation B4

Figure 5.16: Simulations B: comparison for the average fitness (average of 5 evolu-
tionary runs)

Figure 5.17 compares instead the fitness of the best individuals. Again, we can see

how simulation B1 reaches well below average score. A maximum and homogenous

level of fitness is reached instead by the other three setups in about 600 generations.

In Figure 5.18 the average success rate is reported, confirming the findings found

so far. It is nonetheless interesting to highlight how the results scored by B2, B3,

and B4, included in the [80%; 90%] range, are just slightly below those obtained by

the best controllers in the A group.

Given the similarity in the results obtained by B2, B3, and B4 (and, again, keep-

ing in mind that the best success rate is 100% or close to it for all the experimental

setups), in order to identify one of the architectures tested as the best one, we have

therefore decided to look at the end-test statistics for the average team of each setup

at the end of the evolutionary process (see Table 5.10 for a global resume). The

advantage of Simulation B4 becomes evident. With respect to Simulations B2 and

B3 there are a wider number of MAVs still operative at the end of test (2.3 vs. 2.17

207

0 200 400 600 800 1000 1200 1400 1600 1800 2000
100

150

200

250

300

350

400

450

F
it
n

e
s
s
 v

a
lu

e

Generations

Maximum fitness

Simulation B1

Simulation B2

Simulation B3

Simulation B4

Figure 5.17: Simulations B: comparison for the best fitness (average of 5 evolutionary
runs)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

P
e

rc
e

n
ta

g
e

Generations

Percentage of tests concluded successfully

Simulation B1

Simulation B2

Simulation B3

Simulation B4

Figure 5.18: Simulations B: comparison for the success rate (average of 5 evolution-
ary runs)

208

and 2.2 respectively), mainly due to to better abilities in both obstacle-avoidance

(on average, 0.22 MAVs crash against a building vs. 0.32 and 0.28 respectively) and

flying within the environment boundaries (0.15 aircraft exit, on average, from the

designated limits in Simulation B4, vs. 0.2 in B2 and 0.16 in B3). The only pitfall

is the average amount of MAVs that run out of energy during the test: 0.23 for B4

vs. 0.18 for B2 and 0.27 for B3.

Table 5.10: Simulations B: condition of the MAVs at the end of the “average test”
(average of 5 evolutionary runs)

Sim.
Still
operative

Activated their
Boolean output

Crashed
against
a building

Out of
bounds

Out of
energy

Collided

B1 1.18 1.22 0.99 0.22 0.32 0.05
B2 2.17 1.05 0.32 0.2 0.18 0.05
B3 2.2 1.03 0.28 0.16 0.27 0.06
B4 2.3 1.03 0.22 0.15 0.23 0.05

Compared to Simulations A, the proportion of MAVs that ran out of energy

during a test was significantly higher for all of the B setups. Looking at the behaviour

exhibited by the aircraft during the simulations it can be seen how this result is due

to “loops” into which the MAVs may sometimes fall. A MAV enters a closed and

narrow area of the environment and starts flying in a circle, getting stuck because its

US sensors keep detecting the same obstacle pattern thus “instructing” the neural

controller to continue performing the same manoeuvre. This is a problem that in

Evolutionary Robotics happens frequently but typically affects computer simulations

only. This phenomenon does not often reflect in reality (i.e. when the controllers

evolved in simulation are transferred to real robots) because of two main reasons:

the noise in the sensor readings and the non-regularity of the environment. These

two effects together continuously create different sensorial patterns and, in turn,

different behavioural responses that prevent the MAVs from ending up in a loop.

Generalisation experiments and technical improvements

In order to test the general applicability of the model developed, experiments con-

cerning generalisation to a different environment have been carried out in collabora-

209

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3
End−test condition for the average MAVs team

Generations

N
u

m
b

e
r

o
f

M
A

V
s

Activated the end−operation unit

Crashed against a building

Out of bounds

Out of energy

Collided

Still operative

Figure 5.19: Simulation B4: condition of the MAVs at the end of the “average test”
(average of 5 evolutionary runs)

tion with Franck Zetule, who published the results obtained in his MSc thesis [406].

The new experimental setup developed, based upon simulation B4, involves a smaller

reference environment (600 by 600px rather than 710 by 760px), with a layout of

obstacles inspired by the La Défense district in Paris, France (see Figure 5.20).

Apart from the new environment being smaller than the one originally used,

the presence of high-density buildings and a consequent narrower enclosed area

where the target is (alternatively) deployed has provoked some troubles for the

genetic algorithm in evolving working controllers. In order to obtain a successful

evolutionary process, it has been required to make some modifications of the original

fitness formula. The fitness function has been adjusted as shown in Equation 5.4.

f =
υ

8
− α +

β

10
+ 50σ + 10ε (5.4)

This formula differs from Equation 5.3 due to the smaller denominator applied

to parameter β (10 instead than 50) and particularly for the introduction of the

υ parameter, which represents the average difference between the distance of the

MAVs from the target at the beginning and at the end of a test (i.e. measuring to

210

Figure 5.20: The 2D simulated environment used by Zetule for the generalisation
experiments (Paris, La Défense district). Source: [406]

what extent the MAVs have gone close to the target during the testing).

Led by this function, the evolutionary process takes place smoothly as demon-

strated in Figure 5.21. After 2, 000 generations, the average percentage of successful

tests for this experimental setup has exceeded the 85% level. At the end of the

evolutionary process the best controllers have scored a 100% result.

Figure 5.21: Zetule’s experiment: average and best fitness (average of 5 evolutionary
runs). Source: [406]

Even if not conclusive, this investigation has highlighted how it could be feasible

to adapt the basic model described in this paper to any kind of environment. Al-

211

though, it is not to be taken for granted that the original fitness formula might fit

well to differently shaped and sized scenarios. The modifications made on this case

have been marginal, but more studies are required in order to identify a general rule

to follow when applying our model to different simulated environments.

5.4.3 Moving target (simulations C)

In this new experimental setup [319], labelled with the letter C, the target is able to

detect and to move away from the approaching MAVs. This new property has been

introduced to increase the complexity of the task and to test the robustness of the

evolved controllers in front of a dynamically reacting environment.

Every simulation starts as usual, with the target deployed in a random position

within the environment (either inside or outside the “enclosed area”) and station-

ary. Four MAVs are deployed with starting positions and headings calculated as in

Table 5.8. Their goal still consists of avoiding obstacles while reaching the target.

The main difference is in that, at each time step, if a MAV happens to be closer

than 17px to the target, the latter switches (with probability 0.5) to “MAV detected

mode”. When the target is in this special “MAV detected move” it will start moving

attempting to run away from the approaching aircraft. The rules of movement for

the target are straightforward. When in “MAV detected mode” it will check, at

any time step and before the MAVs move, which of the still operative aircraft is the

closest. Once it has identified the closest “menace”, the target has then to decide

in which direction it should move. As it does not have a specific orientation, the

target can move in whatever direction it likes. The evaluation process is carried out

comparing among eight alternative locations around its centre of mass. These po-

sitions are respectively located at its North, North/East, East, South/East, South,

South/West, West, and North/West (implementing what is called a Moore neigh-

bourhood [390]). The distance of these locations from the target (equal for all of

them) depends on the moving speed of the latter. The final decision is made com-

paring the Cartesian distance between the closest MAV and each of the potential

destinations. The target then selects and moves into the cell which maximises its

212

distance from that aircraft.

An example of escaping movement adopted by the target can be seen in Fig-

ure 5.22.

Figure 5.22: The options available to the target for escaping the approaching MAV.
In this example the target T is in cell (4, 2) and the MAV in (1, 5). The target,
assumed to be in “MAV detected mode,” has to move in one cell among T1, T2, ..., T8.
In this case, the choice will be for cell T6 (6, 1) as it is the one that maximises its
distance (to 1.41px) from the approaching MAV [M: MAV, T: target, O: obstacle]

The target will keep escaping from the aircraft as long as all of the detected

MAVs are operative and the distance between the target and the closest aircraft

does not reach/exceed the 48px threshold.

Five simulations have been carried out where we vary the escaping speed of the

target. These different speeds in the various simulations respectively correspond to

different fractions of the MAVs speed (Ms): Ms/2 (simulation C1,) Ms/3 (simulation

C2,) Ms/4 (simulation C3,) Ms/5 (simulation C4,) and Ms/6 (simulation C5).

The topology used for the neural controller is the one developed for simulation

B4, which also implies that the MAVs use three ultra-sonic sensors respectively

oriented at −20◦, 0◦, and 20◦ compared to the aircraft heading.

The fitness function employed for evaluating the performance of the teams is

the same Equation 5.3 used for simulations B. The only modification made in the

evolutionary algorithm has been an extension from 2, 000 to 2, 500 of the number

213

of generations elapsed, as preliminary experiments demonstrated how reaching a

stationary state takes longer in this scenario than in the previous ones.

Results

The results obtained are summarised in Table 5.11. Looking at the data collected we

can easily identify a threshold of sorts. Simulations C3, C4, and C5 seem to perform

equally well according to the various parameters measured. Simulation C2 produces

a significantly worse performance in terms of average fitness, but can be considered

to be performing reasonably well if we take into account both the maximum fitness

and the success rate, as it produces results comparable with those obtained with a

slowly moving target. In simulation C1, where the target moves at half the speed

of the aircraft, the success rate of the MAVs drops instead, as does the average

fitness, while the maximum fitness is comparable with the values obtained by the

other simulations.

Table 5.11: Simulations C: resume of the main results (average of the last 10 gener-
ations, based on 5 evolutionary runs)

Sim. Av. fitness Max fitness
Percentage of tests
concluded successfully

Max. succ.
rate [%]

C1 138.93 395.18 54.48 94.1
C2 198.08 409.67 78.28 99.17
C3 250.68 411.74 81.89 100
C4 258.72 409.9 83.3 100
C5 242.42 413.05 84.06 100

The graph about the average fitness (Figure 5.23) highlights these differences

in terms of performance between the different architectures, thus reinforcing the

findings identified so far.

The maximum fitness plot (Figure 5.24) reaches a maximum and homogeneous

level (about 400 fitness points) in about 1, 000 generations for Simulations C2, C3,

C4, and C5. Simulation C1 follows instead a slower growing trend and ends up

reaching a steady state in about 2,000 generations, although stabilising on a value

slightly lower than the one scored by other setups.

214

0 500 1000 1500 2000 2500
−200

−150

−100

−50

0

50

100

150

200

250

300

Generations

F
it
n

e
s
s
 v

a
lu

e

Average fitness

Simulation C1

Simulation C2

Simulation C3

Simulation C4

Simulation C5

Figure 5.23: Simulations C: comparison for the average fitness (average of 5 evolu-
tionary runs)

0 500 1000 1500 2000 2500
0

50

100

150

200

250

300

350

400

450

Generations

F
it
n

e
s
s
 v

a
lu

e

Maximum fitness

Simulation C1

Simulation C2

Simulation C3

Simulation C4

Simulation C5

Figure 5.24: Simulations C: comparison for the best fitness (average of 5 evolutionary
runs)

215

Figure 5.25 focuses on the success rate of the various setups. This graph, com-

pared to the one in Figure 5.23, better highlights the homogeneity in the results

generated by Simulations C3, C4, and C5 (slightly over 80%), and the difference

with C2 (about 78%), and in particular with C1 (which just scores about 55%).

0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

70

80

90
Percentage of tests concluded successfully

Generations

P
e

rc
e

n
ta

g
e

Simulation C1

Simulation C2

Simulation C3

Simulation C4

Simulation C5

Figure 5.25: Simulations C: comparison for the success rate (average of 5 evolution-
ary runs)

We can now compare the results obtained by the new set of simulations with

those generated in the B scenario (obstacles and fixed target). The comparison is

performed by taking into account the best subset of C simulations (C3, C4, and C5)

and contrasting them with Simulation B4, as the best one came from the previous

experimental setup. The reason for focusing on C3, C4, and C5 - ignoring at the

same time C2 and C1 - is due to some practical considerations, specifically, in re-

lying on the hypothesis that the target to be tracked would be a person. A typical

MAV platform could easily reach and maintain a cruise speed of about 60km/h.

One quarter of this velocity, assuming that the lower bound of this range is being

used, roughly corresponds to 15km/h (with one fifth being approximately equal

to 12km/h, and one sixth to 10km/h). Considering that the speed of an aver-

age person moving within a crowded environment could be approximated into the

[4km/h; 7km/h] range while walking, and [12km/h; 15km/h] while running (ignor-

216

ing how this speed would be maintainable just for a short period of time), we might

argue that the evolved controllers are able to accomplish the tasks that they are sub-

ject to with a high degree of confidence even in presence of a target with a moving

speed, in a urban environment, comparable to the one of a human being.

On the basis of the considerations above, we can now look at the comparative

plots. It should be noted that the comparison is limited to the first 2,000 generations,

as no more were elaborated for Simulations B.

Figure 5.26 contrasts the average and the best fitness values in B and C. The

first thing that comes to the eyes is the similarity in the results shown. The average

fitness, as expected, is slightly lower for Simulations C as the task, involving a moving

target, is significantly more difficult than the previous one. Although, this difference

is not particularly relevant: 269.5 fitness points for B, 245.63 for C. Such a difference

completely disappears if we look at the maximum fitness (i.e. the fitness value for

the best individuals/controllers within a certain generation). In this case, the two

curves tend to reach extremely similar levels of performance, thus indicating that

the best controllers evolved in Scenario C perform, when tackling a target moving

at no more than one quarter of MAVs’ cruise speed, with the same proficiency as

those evolved to deal with a static target.

Figure 5.27 compares the success rate obtained in the two scenarios. Here the

difference between B and C can be more easily seen than when looking at the average

fitness values plotted in Figure 5.26. The percentage of tests concluded successfully

is 87.62% in B, 82.80% for Simulations C.

The main conclusion drawn from this experiment is that our simulation setup

can evolve MAV controllers that are able to navigate through unknown environ-

ments and autonomously reach a target, not only when the latter is stationary on

a certain position of the environment, but also when it is able to move away from

the approaching aircraft. The only constraint is that, in order to keep a “good”

average success rate, the target should not be able to move faster than one quarter

of MAVs speed. In terms of potential application of these controllers in real life

scenarios, the results suggest that such controllers could be employed for example

217

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−200

−100

0

100

200

300

400

500

Generations

F
it
n

e
s
s
 v

a
lu

e

Average and maximum fitness

Average fitness − Mean of Simulations C3, C4, and C5

Average fitness − Simulation B4

Maximum fitness − Mean of Simulations C3, C4, and C5

Maximum fitness − Simulation B4

Figure 5.26: Simulations B and C: comparison for the average and best fitness
(average of 5 evolutionary runs)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90
Percentage of tests concluded successfully

Generations

P
e

rc
e

n
ta

g
e

Mean of Simulations C3, C4, and C5

Simulation B4

Figure 5.27: Simulations B and C: comparison for the success rate (average of 5
evolutionary runs)

218

using people, walking across an urban environment, as moving targets (ignoring,

at the moment, all the implications and side effects related to the potential usage

of hazardous payloads within crowded environments). But, again, the best evolved

controllers (see the last column of Table 5.11) have demonstrated the ability to cope

successfully with any target’s speed. Even, quite unexpectedly, with targets moving

at half the speed of the MAVs and hardwired for the maximum efficiency possible.

5.4.4 Implicit cooperation (simulations D)

The setup labelled with the letter D, described by Ruini et al. [326, 321], adds the

constraint of requiring two MAVs to activate their end-operation units in proximity

of the target at the same time (i.e. within a limited maximum number of time

steps apart from each other, since the simulation works in discrete time) in order to

succeed in the test.

The target begins each training epoch with the assigned status of “healthy”.

When one of the MAVs manages to reach the position in which the target is and

is able to activate its end-operation unit within a 2.48px distance (i.e. the same

situation that in the previous setups would have concluded the test as successful),

the status of the target switches to “damaged”. If a second MAV manages to

activate its end-operation neuron when close enough to the target while the latter is

still in “damaged” mode, the test would be considered a success. In the case of no

MAVs managing to complete the task within 10 time steps since the target switched

to “damaged”, the target will restore to its original “healthy” condition and the

simulation will goes on as usual, till the accomplishment of the task or the failure

of the entire team.

In order to ensure that the aircraft can satisfy the new goal, we have provided

them with the capability of gathering new pieces of information from the envi-

ronment. Each member of the team is now able to detect both the status of the

target (healthy rather than damaged) and the presence of a teammate within a

30px distance. This information is fed as input to the neural controller through

two additional Boolean neurons. Apart from inserting these additional neurons, the

219

neural network maintains the same characteristics as before. Figure 5.28 provides a

graphical representation of the new controller topology.

Figure 5.28: Graphical representation of the NN controller used in Simulations D.
Its topology consists in 9 input neurons (1 for encoding the MAV-target distance, 3
for the MAV-target angle, 3 for the ultra-sonic perception, 1 for the detection of a
teammate, 1 for the status of the target) 15 units processing the information in the
hidden layer, and two output neurons (yaw and “end-operation” respectively) [D:
discrete; C: continuous; B: Boolean]

We assume that the information about the target status is provided to the oper-

ative MAVs by the overall satellite-based system hypothesised before. The system

receives the signal sent by an aircraft which has activated its end-operation unit at

a distance compatible with the 2.48px distance threshold and interprets this com-

munication as the happened “damaging” of the target. As in any real life scenarios

where a task has to be performed cooperatively, the agents involved in it need to be

provided with the ability to communicate, whether explicitly (i.e. intentionally), or

implicitly (i.e. non-intentionally), amongst themselves. In this experimental setup

we introduce a simple form of implicit communication merely consisting of the ca-

pability to detect the presence of teammates within a delimited perception field. In

more details we define the experience of an implicit communication exchange as the

ability to detect the presence of a teammate within the own sensorial space. This

can be considered communication as information is provided by observation, it is

implicit because the actor observed does not necessarily intend to communicate any

220

information through their behaviour. A work based upon a very similar principle

can be seen in Pagello et al. [285].

The two new neurons implement a sort of logic OR. Apart from being in the

proximity of the target, in order to decide the proper moment in which to activate

its end-operation unit a MAV needs to know either that there is a teammate close

to it (within a 30px distance, thus making it possible for the other MAV to reach

the target within 10 time steps), or that the target is currently in damaged state,

or that both conditions (proximity of a teammate and target’s damaged state) are

true.

The fitness function has been significantly modified also in order to allow the

new desired behaviour to evolve. We have introduced two new concepts of “target

approached” and “target damaged”. At the end of a test, we define the target as

approached if at least one MAV has activated its end-operation unit within a 63px

distance from it. The target is considered damaged instead if at least one MAV has

managed to do the same within the 2.48px threshold. These modifications tend to

recreate what we could see as a sort of incremental evolutionary process (although

not “formalised” as proper incremental evolution, a thing which has been done

successfully by Barlow et al. [27] instead). The MAVs learn at first how to perform

the simplest of the sub-tasks (i.e. avoid obstacles and approach, although quite

roughly, the target), then they progressively move toward the following sub-task of

increasing difficulty (getting closer and closer to the target), which in turn makes

the accomplishment of the overall task possible.

Putting all this together, the new fitness function is expressed in Equation 5.5:

f = γ
χ

4
+ η

χ

2
+ λχ+ 10ε+

β

50
(5.5)

where: γ is the number of tests concluded with at least one MAV approaching the

target in the sense we have defined above; η is the number of tests concluded with at

least one MAV damaging the target; λ is the number of tests concluded successfully

and χ, a parameter arbitrarily chosen in order to assign different specific weights to

γ, η and λ, equals to 50. Parameters ε and β have a similar meaning to those in

221

Equations 5.2 and 5.3, as they respectively represent the total number of MAVs still

operative at the end of the all tests, and the average amount of energy retained by

the MAV that had eventually concluded successfully the test.

For what concerns the evolutionary algorithm, it has to be considered that the

new fitness function introduces several new parameters, thus drawing a fitness land-

scape that might easily be seen as more complex than what the previous fitness

functions were creating. With this in mind the evolutionary algorithm has to be

modified to cope effectively with the new scenario. Every team is now tested twelve

times rather than four, the evolutionary process lasts for 5,000 generations (twice

as much as in C), and ten evolutionary runs rather than five are evaluated.

Two different experimental setups have been elaborated for this scenario. One

in which the target is a static one (Simulation D1), and one in which the target is

able to move away from the approaching MAVs (Simulation D2).

Results

Before looking at the numerical results, we will discuss a qualitative description of

the behaviour that has emerged. The strategy the MAVs evolve is straightforward,

but nonetheless very effective. They independently look for their way to the target as

in the previous experimental setup, without any interactions (if not purely generated

by chance) with the teammates. Once the first MAV gets close to the target, instead

of immediately activating its end-operation unit it keeps flying in circle around the

location of the target. Only when a teammate arrives in the proximity of the target

as well (thus being detected by the aircraft already there), the first MAV activates

the end-operation procedure. Quickly following, the second MAV, detecting the

target as damaged, does the same without waiting for the other members of the

team to arrive, thus successfully concluding the test. An example of the evolved

behaviour can be observed on Figure 5.29.

Looking at the figure showing the flight paths followed by the aircraft we can

also identify a tentative wall-following behaviour exhibited by some of the MAVs

(MAV #4 in particular). Although no walls or alternative physical boundaries

222

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

X axis

Y
 a

x
is

Flight paths followed by a team of four MAVs during a test

MAV 1

MAV 2

MAV 3

MAV 4

Target

Figure 5.29: Simulation D1: flight paths followed by a team of MAVs cooperatively
approaching the target

are surrounding the environment in which the simulation takes place, the ultra-

sonic sensors have been set up to consider some geographical coordinates (those

corresponding to the edges of the simulation area) as obstacles. The controllers

have therefore evolved to exploit this characteristic, specifically using obstacles and

environment boundaries to make the task of navigating straight easier.

This is an approach that, as far as the author’s knowledge goes, has not ever

been implemented on autonomous controllers installed on physical MAVs, but which

could nonetheless be worth investigating.

Now we can have a look at the data generated by the experiments. For what

concerns the setup in which a non-moving target is employed (Simulation D1), Fig-

ure 5.30 presents the average and the best fitness values scored at each of the 5,000

generations elapsed. As this is the first experimental setup in which this fitness

function is used, we can not perform any meaningful analysis of this graph other

than study the trend, which develops smoothly as expected and reaches a steady

state in about 4,000 generations.

223

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
200

400

600

800

1000

1200

1400
Average and maximum fitness

Generations

F
it
n

e
s
s
 v

a
lu

e

Average fitness

Maximum fitness

Figure 5.30: Simulation D1: average and best fitness (average of 10 evolutionary
runs)

Figure 5.31 focuses on the success rate. Contrary to the graphs measuring the

same data from the previous setups, in this one, three curves are plotted. The

overall success rate is represented by the red curve with vertical lines as markers;

the blue curve with circular markers shows the percentage of tests where at least one

of the MAVs gets “damaged”; the green curve with diamond markers highlights the

proportion of tests in which at least one MAV managed to “approach” the target (in

the criteria used in the fitness function, i.e. to activate its end-operation unit when

located closer than 63px to it). The simulations carried out using a fixed target

have produced a surprisingly good performance. On average, for the individuals

belonging to the last generation, more than 70% of tests (72.06%) are successful,

while nearly 90% (88.08%) finish with the target correctly reached at least once. The

percentage of targets ”approached” quickly reaches its steady state, which exceeds

the 90% threshold (92.16% as average of the last 100 generations).

The graph in Figure 5.32, concerning the condition of the evolved MAVs at

the end of an average test, looks significantly different compared to B4 (the best

among the setups involving a static target and obstacle avoidance capabilities).

The first and most obvious difference is the amount of MAVs that have activated

224

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

90

100
Percentage of the different degrees of success obtained by the MAVs teams

Generations

P
e

rc
e

n
ta

g
e

Target approached

Target damaged

Test succeeded

Figure 5.31: Simulation D1: percentage of tests concluded either successfully, with
the approaching, or with the damaging of the target (average of 10 evolutionary
runs)

their end-operation unit. In this scenario, the value increases from 1.03 to 2.2453.

The difference from the optimum (which would be 1 in simulation B4, 2 in D1) is

significantly larger in this experimental setup, as a side effect of the lower success

rate achieved. This statistic impacts on the number of aircraft still operative at

the end of the test, which drops from 2.3 to 0.99. But there are also other factors

contributing to this result. The percentage of MAVs colliding with each other has

increased from a negligible 0.05 to a more tangible 0.16 as an outcome of the evolved

behaviour, which makes the MAVs aggregate in proximity of the target and fly in

a circle around him. This is a behaviour that, other than increasing the likelihood

of a collision, also increases the amount of aircraft running out of energy (from

0.23 to 0.33). On the other side, MAVs evolved in this scenario a much better

obstacle avoidance capability probably due to the lengthening of the duration of the

evolutionary process. Although the number of vehicles crashed against a building

increases from 0.22 to 0.27, this effect is compensated by the amount of MAVs

exiting from the environment boundaries during each test, which has dropped from

0.15 to 0.002.

225

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5
End−test condition for the average MAVs team

Generations

N
u

m
b

e
r

o
f

M
A

V
s

Activated the end−operation unit

Out of bounds

Out of energy

Collided

Crashed against a building

Still operative

Figure 5.32: Simulation D1: condition of the MAVs at the end of the “average test”
(average of 10 evolutionary runs)

The situation is more interesting for what concerns Simulation D2. Figure 5.33

shows the average and maximum fitness values registered in this scenario, both

significantly lower than those obtained in D1: 804.7 v. 1024.6 for the average

fitness, 1169.1 v. 1304.4 for the one of the best individual. Particularly significant is

the relative drop in the curve relating to the maximum fitness, which is an unusual

finding in our simulations as most of the times the maximum fitness remained similar

across the different scenarios, while the trend for the average fitness curve was

varying from scenario to scenario.

Figure 5.34 analyses in more detail the determinants of these significant differ-

ences in fitness. In the new setup, the fact that the target is able to move dra-

matically reduces the overall success rate of the MAVs, which drops below the 50%

threshold (48.94%.) Also affected, although with a minor impact, are the statis-

tics related to the percentage of tests concluded with the “damaging” of the target

(78.81% v. 88.08%) and of those where the target has been at least approached by

a MAV (86.03% v. 92.16%).

Figure 5.35, focusing on the end-test condition for the “average” MAV team (for

which the rough data are provided in Table 5.12), provides the most useful findings.

226

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

200

400

600

800

1000

1200
Average and maximum fitness

Generations

F
it
n

e
s
s
 v

a
lu

e

Average fitness

Maximum fitness

Figure 5.33: Simulation D2: average and best fitness (average of 10 evolutionary
runs)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

90
Percentage of the different degrees of success obtained by the MAVs teams

Generations

P
e

rc
e

n
ta

g
e

Target approached

Target damaged

Test succeeded

Figure 5.34: Simulation D2: percentage of tests concluded either successfully, with
the approaching, or with the damaging of the target (average of 10 evolutionary
runs)

227

The main difference is in the amount of MAVs still in operation at the end of the

average test, falling to 0.59. This drop is not due to a bigger proportion of aircraft

activating their end-operation unit. The data shows the opposite effect instead: 2.10

in D2 compared with the 2.24 obtained in D1. The low survival rate is due to an

increased proportion of MAVs colliding against each other (0.29 v. 0.16), running

out of energy (0.4 v. 0.33), exiting from the environment boundaries (0.03 v. 0.002,)

and in particular crashing against a building (0.58 v. 0.27).

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3
End−test condition for the average MAVs team

Generations

N
u

m
b

e
r

o
f

M
A

V
s

Activated the end−operation unit

Out of bounds

Out of energy

Collided

Crashed against a building

Still operative

Figure 5.35: Simulation D2: condition of the MAVs at the end of the “average test”
(average of 10 evolutionary runs)

Table 5.12: Simulations D: condition of the MAVs at the end of the “average test”
(average of 10 evolutionary runs)

Sim.
Still
operative

Activated their
Boolean output

Crashed
with
a building

Out of
bounds

Out of
energy

Collided

D1 0.99 2.24 0.27 0.002 0.33 0.16
D2 0.59 2.10 0.58 0.03 0.4 0.29

A detailed comparison between the results obtained in the two setups can be

found in Table 5.13.

228

Table 5.13: Simulations D: resume of the main results (average of the last 10 gen-
erations, based on 10 evolutionary runs) [SR: success rate]

Sim. Av. fit. Max fit. SR [%] Tgt dam. [%] Tgt app. [%] Max SR [%]
D1 1024.6 1304.4 72.06 88.08 92.16 97.51
D2 804.7 1169.1 48.94 78.81 86.03 89.92

Overall, a target able to move constitutes a major issue for the MAVs, as they

find it more difficult to implement the strategy that emerged in D1, which is still

the one they seem to imitate. The first aircraft approaching the target can have

in fact a hard time flying around the target when it moves, for example, close to a

building (when a test starts, the target is always deployed at a certain distance from

both the buildings and the environment boundaries, but the problem arises when

one of the MAVs approaches it). The continuous movements made by the target can

easily cause the attacker to make mistakes, leading it to crash or, for example, in

situations in which the first MAV misjudges the right moment in which to activate

its end-operation unit causing the second aircraft to arrive too late on the target.

Simulation D2 is one of the few (the only one if we do not take into account the

preliminary ones used to determine the best way of encoding the input data) we

have seen so far that can not reach the 90% threshold for the success rate of the

best evolved controllers.

Workarounds on the GA (simulations E)

In order to improve the convergence speed of the evolutionary algorithm and to

explore the solution space in a more efficient way, two new experiments have been

carried out.

The first of these new setups (labeled E2) maintains the same characteristics as

Simulation D1, though implementing three different genetic operators::

1. selection operator. As before, the best team in every generation is copied to

the following one without any modifications (elitism). Then 94 pairs of parents

are chosen for reproduction via a fitness-proportionate selection implemented

as “roulette wheel” sampling [257];

229

2. crossover operator. This operator has been introduced in the form described by

Montana and Davis [262]. Each of the selected pairs of parents generates a sin-

gle offspring, thus creating 94 new individuals at every generation. Crossover

works in the following way: for each non-input neuron of the offspring, one

of the two parents is selected with 50% probability; the child inherits from

the chosen parent the input connection weights to that neuron, as well as the

associated bias;

3. mutation operator. The mutation operator affects all of the 94 offspring gener-

ated through crossover. For each neural network, three non-input neurons are

randomly selected (all of them having the same probability of being chosen).

The biases and all the incoming connection weights of the selected neurons are

mutated through the addition of a value picked from a uniform distribution

ranging between −0.5 and +0.5.

The remaining five individuals (not six as elitism is used) are created with ran-

domly assigned connection weights and biases in order to preserve the algorithm

from the risk of premature convergence.

The second setup (Simulation E2) is virtually identical to E1, with the only

difference being the implementation of the selection operator. In E2, the fitness

values used to calculate the size of the roulette wheel’s slices are scaled (through the

“sigma-scaling” method).

The results obtained in these two new experimental setups, detailed on the sec-

ond and third row of Table 5.14, have highlighted a strong performance decreasing

in comparison with D1, thus suggesting that it would be advisable to avoid the

implementation of any modifications to the evolutionary algorithm used so far. At

the same time, given this poor performance, the author has not found it useful to

run an additional test employing the modified genetic algorithm on the D2 scenario.

Some explorative analyses have also been conducted using a binary genome,

rather than one based on real values. Employing both Boolean and Gray Code

encodings, with single and multi-points crossovers and different mutation rates, the

results indicated yet again a significant difficulty for the network to reach a weight

230

Table 5.14: Comparison between simulations D1 and E

Sim. Av. fitness Max fitness
Percentage of tests
concluded successfully

Max. succ.
rate [%]

D1 1024.6 1304.4 72.06 97.51
E1 771.3 1133.7 47.47 88.29
E2 856.59 1253.9 56.69 97.03

set appropriate for the task, and therefore these conditions have been ignored too.

5.5 Conclusions

It is now time to summarise the results of the experiments described in this chapter.

In paragraph 4.6.1 we have introduced our measure of success, which simply consists

in the 90% accuracy for the best evolved controllers in performing the task required.

In the first experimental setup (simulations A) we aimed at identifying the best

controller architecture for the simplest of the tasks studied, i.e. navigating au-

tonomously towards a static target, within an obstacle-free environment, and per-

forming a certain operation (represented by the activation of a specific neural net-

work output) once there. Eight different neural network topologies (A1-A8) were

contrasted and some of them produced very convincing results. The 90% success

threshold, for example, was comfortably exceeded by two topologies, A2 and A6,

even just looking at the average performance obtained by the controllers belonging

to the last few generations (93.46% and 88.14% respectively). If we look at the

performances generated by the best controllers of every configuration instead, five

architectures (A1, A4, and A5, apart from the aforementioned A2 and A6) passed

the test successfully, scoring values equal or close to 100%. The three remaining

topologies (A3, A7, and A8) performed significantly worse, unable to reach even a

33% threshold. We can therefore conclude that most of the architectures tested re-

sulted in being perfectly capable of implementing basic two-dimensional navigation,

notwithstanding the constraints imposed on the motion of the MAVs. Looking in

detail at the characteristics of the various architectures in relation to the results

they scored, we can conclude that there is no a clear most effective way for encod-

231

ing the MAV-target distance, thus either using a discrete or a continuous encoding

does not seem to affect the performance of the controllers too much (with a slight

preference towards discrete encoding). The results related to the encoding of the

MAV-target angle show instead a clear advantage provided by architectures rely-

ing on a segmentation of the angle in a certain number of subspaces, numbered by

binary notations.

Positive results have been obtained in the second experimental setup (simulations

B, obstacles introduced into the environment) as well, where the performances of 4

different controllers (varying the number and orientation of the ultra-sonic sensors

and consequently the network topology in order to accommodate the different input)

were compared. Only simulation B1 (in which a single forward-looking sensor was

employed) failed in generating an average success rate for the evolved controllers

exceeding the 90% threshold (stopping far below, precisely at 61.65%). Rather,

simulations B2, B3, and B4 all obtained values well over the threshold, respectively

86.34%, 84.27%, and 87.62%. The best controllers performed with 100% accuracy

or (simulation B1) very close to it.

In the third experimental setup (simulations C) the target can spot an approach-

ing MAV and move accordingly trying to escape from it. We have contrasted five

scenarios in which we varied the speed of the target. When the target’s moving

speed was lower than one fourth of MAVs’ speed the average success rate exhibited

by the controllers exceeded the 80% value (81.89% for C3, 83.3% for C4, and 84.06%

for C5). The same results were not achieved with targets moving at a higher speed:

78.28% success rate for targets moving at one third of the MAVs’ speed, 54.48%

when escaping at half the speed of the hunter. Again we should look nonetheless

to the best rates achieved by the evolved controllers, which highlights again the

same one-fourth threshold: in C3, C4, and C5 the controllers have performed with

a 100% accuracy, but also C1 and C2 exceed comfortably the 90% threshold (94.1%

and 99.17% respectively) used to determine the “success” in our experiments.

For what concerns the fourth experimental setup (simulations D) the coordina-

tion required to the MAVs has made the task significantly more difficult to achieve

232

for their controllers. None of the two experiments carried out (simulation D1, in

which the MAVs had to cooperatively approach a static target, and simulation D2,

where the target attempts to escape) reached the 90% threshold in relation to the

average success rate, falling short at 72.06% and 48.94% respectively. The success

rate of the best-evolved controllers exceeded the “approval” threshold for simulation

D1 (scoring 97.51%), but not for D2 (stopping at 89.92%).

In the set of simulations labelled with the letter E we have analysed some mod-

ifications to the GA component of our experiments. Although the results obtained

might be considered satisfying looking at the performances generated by the best

evolved controllers (at least for E2, which scored a good 97.03% accuracy, while E1

stopped at 88.29%) the average success rate dropped significantly, thus not giving

us any good reason for studying them in more depth.

This chapter has also presented some analysis carried out in order to test the

validity of the simulation model we have created in terms of generalisation. A few

modifications to the fitness function used for the genetic algorithm has allowed to

evolve controllers coping effectively with a different environment than the one used

in simulations A-E.

Chapter 6

Simulation Experiments in 3D

Environments

This chapter illustrates the second of the three computer models we have developed

for the purposes of this Ph.D. research. What we present here is a three-dimensional

extension of the 2D model presented in chapter 5. As with the previous model, the

MAVs are engaged in autonomous navigation toward a certain target area. How-

ever this time the environment is obstacle-free. The vehicles rely upon a mixture of

local and global information: the assumption underlying the model is still the one

that consists in an “upper-level” system, aware of the location of the target, always

available and able to broadcast this information in real-time to the aircraft. The

MAVs can match this information with their own knowledge (i.e. proprioceptive

information related to their current spatial position/orientation, and sensor read-

ings) in order to find the path to be followed to reach the area in which the target

is located.

6.1 Software simulator

The computer simulator used for the implementation of the 3D model, written in

C++, has been developed relying on a few open-source libraries, namely Irrlicht1 as

3D engine, NNFW to manage the neural networks-related aspects, and Qt because

1http://www.irrlicht.sourceforge.net

235

of the particular data structures these libraries offer, combined with the possibility

of quickly implementing multi-threading support.

Notwithstanding the addition of a third dimension to the simulator, no physics

engines2 have been used, mainly for two reasons. First, this work explicitly looks at

the navigation problem from an higher perspective than the one which is typically

adopted in control systems literature. In order to focus on intelligent navigation, we

simply assume that the robotic aircraft we simulate are able to respond to high-level

commands (e.g., “yaw 1 ◦ clockwise,” or “pitch 0.3 ◦ up”) generated by a controller

in the desired and expected way. This assumption is easily justified as we can simply

think of an autopilot system (as those introduced in chapter 3) embedded on the

aircraft, which takes care of the “low-level” issues (flight stabilisation and implemen-

tation of the navigation instructions received), combined with an onboard computer

which runs the controller software, thus processing the information available and

generating the commands to be executed. Once we implement in our simulator non-

physics based, but at the same time non-unrealistic, aircraft dynamics our purposes

are satisfied. Finally, the Evolutionary Robotics approach generally requires a signif-

icant amount of time for the evolutionary process to reach a steady state. Avoiding

the use of a physics engine allows for a significant reduction of the computation time

required to perform the evolution of the autonomous controllers.

The 3D simulator has been developed as consisting of two components running

independently from each other: the evolutionary engine and the viewer. We will

analyse them in the next two sub-paragraphs.

6.1.1 The evolutionary engine

The evolutionary engine is a command line tool, which performs the evolution of

the controllers, reading the fundamental simulation settings from an external text

file. The parameters the user can set by modifying this file are several:

2A physics engine is a computer software that provides an approximate simulation of certain
physical systems, such as rigid body dynamics (including collision detection), soft body dynamics,
and fluid dynamics, of use in the domains of computer graphics, video games and film. Examples
of popular software physics engine often used in applications similar to the ones presented in this
thesis are Open Dynamics Engine (ODE, http://www.ode.org), and Newton Game Dynamics
(http://newtondynamics.com).

236

• Size of the simulated environment [X, Y, Z];

• MAV parameters : starting position (either distributed along the four corners of

the environment or clustered together in a random position), movement length

per time-step, starting amount of energy, energy consumption per time-step,

range of the end-operation unit (how far from the target the MAV must be for

its end-operation module to work properly), output multiplier (the absolute

values generated by the yaw/pitch/roll neurons are multiplied by the value set

here before being translated into commands and executed);

• Target parameters : these parameters define the behaviour of the target when

it is allowed to move. In detail we have: first detection range (if the target has

not detected a MAV yet, how close the aircraft must be to be noticed), first

detection probability (what is the probability that a MAV closer than “first

detection range” to the target will be detected by the latter), last detection

range (how far a MAV must be, with respect to a target which has already

spotted a MAV, in order to be detected), and target movement length (how

far the target can move per time-step);

• NN parameters : network topology, number of units in the hidden layer;

• GA parameters : population size, number of MAVs per team, number of evo-

lutionary runs, number of generations per run, number of testing epochs for

each team, selection method (either rank selection or roulette wheel), number

of controllers selected for reproduction at the end of each generation, number

of offspring per parent, elitism [yes/no], probability of the mutation operator

to modify a weight/bias of the parent being reproduced, minimum and maxi-

mum values for the range of the mutation operator, minimum and maximum

of the range the connection weights and the biases can assume when the first

generation is created;

• Statistics : directory where to save the results, number of data points to be

displayed in the graphs, saving interval (how often the data should be saved

on disk during an evolutionary process), RNG seed initialiser;

237

• Incremental evolution: enabled [yes/no], source directory containing the pop-

ulation to be further evolved;

• Miscellaneous : compile as a multi-thread application [yes/no], debug mode

(continuously prints various outputs on the screen) [yes/no], timer enabled

(used to measure the duration of the evolutionary process) [yes/no].

The decision to store all of these parameters into an external text file makes it

significantly easier for the experimenter to automatically run several evolutionary

processes through proper console scripts, and faster to adjust one or more parame-

ters with debugging or performance comparison purposes. At the end of every few

generations (depending on the “saving interval” parameter introduced above) the

simulator saves a series of statistics into distinct text files on the disk:

• Alive: average number of MAVs per team alive at the end of a test;

• Completion attempts : average number of MAVs activating their end-operation

unit during a test;

• Energy remained : average amount of energy left to the MAVs when a test

ends;

• Fitness (average): average fitness value for the entire population;

• Fitness (maximum): best fitness value across the entire population;

• Out of bounds : average number of MAVs that attempted to exit the boundaries

of the environment during a test;

• Out of energy : average number of MAVs running out of energy during a test;

• Success rate (overall): overall percentage of tests concluded successfully for all

the members of a certain generation;

• Success rate (maximum): percentage of tests concluded successfully by the

best team in a given generation;

238

• Target distance (average): average distance between the target and the MAV

which was the closest when it activated its end-operation unit during a test

(average value for the entire population);

• Target distance (minimum): average distance between the target and the MAV

which was the closest when it activated its end-operation unit during a test

(minimum value for the entire population).

Compared to the statistics collected by the 2D simulator discussed in chapter 5

we can see that their number has been reduced. A couple of metrics are not collected

anymore indeed: the number of MAVs collided against each other during a test

(switching to a 3D environment has made the likelihood of such collisions so low

that they can be safely ignored), and the number of MAVs crashed against buildings

(as there are no buildings in the new scenario).

The simulator relies on the dedicated NNFW functions to save the evolved con-

trollers to the disk in XML format, at the end of the evolutionary process, using the

same file structure described in the previous chapter.

6.1.2 The viewer

The viewer, the second main component of our 3D software simulator, is an appli-

cation with its own GUI (designed in Irrlicht) capable of loading from the memory

an evolved controller, assigning it to a certain number of MAVs and graphically dis-

playing their flight behaviours to the end user in order to study the reasons behind

certain behavioural patterns that might have emerged.

A screenshot of the viewer application can be seen in Figure 6.1. The picture

highlights the 3D model of the MAV3, a sphere representing the target (a squared

bounding box is also visible), a series of real-time stats on the left-hand side of the

application window and a few controls on the right-hand side. These controls4 allow

3Downloaded from: http://md2.sitters-electronics.nl
4Some of these controls, and those referring to evolution in particular, are disabled. They appear

in the picture as, initially, there were no plans for dividing the 3D simulator into an evolutionary
engine and a separated viewer. This need arose later on and the earlier monolithic simulator,
stripped off his evolutionary components, then became the viewer. Some buttons and controls
were not removed in case they could have become useful at some point later. Rather they have
been simply disabled.

239

the user to set the number of MAVs to be introduced inside the environment and the

topology of their NN controllers. The user can start/stop a test at any time. When

a test is running he is offered the possibility to switch between the different cameras

available (one on the cockpit of each aircraft, one fixed on top of the simulated

environment and looking down, one freely movable by the user).

Figure 6.1: Screenshot of the 3D simulator

The viewer also saves on the disk5 a text file containing the flight paths fol-

lowed by the various MAVs during the test. Technically, the structure of this file

is extremely simple as it consists of a series of rows with values displayed along six

columns (written in CSV format), according to the description provided in Table 6.1.

Table 6.1: Structure of the text file in which the flight paths followed by the MAVs
during a test are memorised

Test ID MAV ID Time-step X coord. Y coord. Z coord.

5By default on the same directory where the application executable is launched from.

240

6.1.3 Computation issues

With regard to computational aspects, this new simulator is “much heavier” and

CPU-intensive than the one previously developed. Because of this the simulations

presented in this chapter have been run on a dedicated computer grid rather than

on a standard desktop machine. Specifically, all of the experiments have been

carried out on a computer grid managed by Sun Grid Engine6, consisting of 4

AppleTMXserve machines (each of which with two quad-core 2.66GHz IntelTMCPUs

and 4GB of RAM) awarded to our research group through the Apple ARTS program

(see Appendix C). In order to benefit from the multitude of calculation cores avail-

able and based on the findings by Gautier [131], according to which the adoption

of multi-threading programming methodologies can dramatically improve the speed

of the evolutionary process for our 2D model, the evolutionary engine of the 3D

simulator has been written so to be smoothly compiled and run as a multi-thread

application [322].

6.1.4 Moving from 2D to 3D

Moving from a 2D to a 3D simulator implies that the degrees of freedom (DoF)

available to the simulated aircraft increase from one to three. In the 2D scenario

the MAVs rely in fact on a single DoF, since they can just rotate clockwise or anti-

clockwise. An object located inside a three-dimensional environment, instead, can

rotate around three different axes. We have already seen how, within the aeronautics

field [76] these rotations are commonly named as a) yaw (Ψ), the rotation around

the top-down axis; b) pitch (θ) the rotation around the wing-to-wing axis; and c)

roll (Φ) the rotation around the nose-to-tail axis. These are the same rotations of

the aircraft that we can simulate within our computer model.

From a control perspective, the introduction of rolling is the most significant

addition to the previous model. According to the current roll angle of the aircraft,

in fact, yaw and pitch rotations can produce completely different results. Making it

difficult, for the controller, to correctly ascertain the potential outcome of any given

6http://gridengine.sunsource.net

241

manoeuvre if the orientation around the Φ axis is not taken into account.

6.1.5 Common features of all simulation setups

The 3D simulator we have developed has many of its main characteristics in common

with the 2D model described in previous chapter. The simulations still focus on

distributed control and group behaviour: the aircraft, driven by autonomous neural

network based controllers, have to look for the target and, when close enough to it,

activate a specific “end-operation” unit of their neural controllers (which can only

be used once per life-span).

The reference environment, sketched in Figure 6.2, is a three-dimensional area

with size 1, 000 (X) by 1, 500 (Z) by 600 (Y) Graphical Units (GUs7). The aircraft

have an approximate length of 3.5GU , while the target is constituted by a sphere

with a 15GU radius. 15GU is also the same radius used for the end-operation

procedure, i.e. a MAV needs to activate its Boolean output unit when closer to the

target than that in order for the current test to be considered successfully (as long

as a single MAV reaching the target is considered a successful outcome of the task).

Figure 6.2: The simulation reference environment (the axes notation comes from
Irrlicht, the 3D computer graphics engine adopted)

In the 3D model teams can be made up of a differing number of aircraft as

opposed to the 2D model in which the team numbers were uniform. As we will see

later, simulations A and B (where the task can be successfully performed by a single

7The use of a 3D computer graphics engine made our model using this unit of measure rather
than pixels.

242

agent) will use individual MAVs for the evolutionary process, while teams of four

MAVs will be used in simulations C because of the different requirements of the

task.

Each controller is tested for a certain number of epochs being cloned in all of the

MAVs members of the same team. Each of these tests starts with the aircraft de-

ployed in different positions and with the target randomly assigned to approximately

the middle of the environment. Table 6.2 resumes the rules followed by the simu-

lator for the initial deployment of the agents in the different setups. When teams

made of a single MAV are used, the aircraft is deployed alternatively in each starting

position depending on the test epoch studied. When four MAVs are used instead,

each of them will always start any test from a specifically designated position.

Table 6.2: 3D simulations: initial deployment of MAVs and target

Agent X coordinate Z coordinate θ Ψ Φ
Target [200; 800] [300; 1200] N/A N/A N/A
MAV1 [30; 100] [1350; 1470] −90◦ [−55◦;−35◦] 0◦

MAV2 [900; 970] [1100; 1220] −90◦ [35◦; 55◦] 0◦

MAV3 [30; 100] [30; 150] −90◦ [−145◦;−125◦] 0◦

MAV4 [900; 970] [30; 150] −90◦ [125◦; 145◦] 0◦

With regard to the starting orientations, they are measured according to the

following conventions:

• θ: express the relation between the aircraft wing-to-wing axis and the envi-

ronment Y axis. 0◦ is the aircraft deployed along that axis facing up, −180◦

corresponds to the MAV still parallel to that axis but facing downwards;

• Ψ: assuming there is no Y axis, 45◦ identifies a MAV deployed in X =

1000, Z = 1500 facing the centre of the environment. The value increases

clockwise within the [−180◦; 180◦] range;

• Φ: 0◦ refers to the aircraft parallel to the ground. Rotating the right wing

down would increase Φ, while rotating the right wing down would decrease it.

Table 6.2 does not explicitly mention the Y axis, as some of the experimental

setups elaborated upon exclude the possibility for pitch rotations from the MAVs’

243

behavioural repository. In case of scenarios where pitch is allowed, each MAV is

initially deployed at an altitude randomly picked within the [200; 400] range, while

the target is in [15; 500]. If pitch is not contemplated (thus recreating a pseudo-2D

scenario inside a 3D world), the MAVs are all deployed at 10GU along the Y axis,

and the target at 15GU . The (X,Z) coordinates of the target refer to its centre,

and this explains why Table 6.2 indicates different altitudes for the MAVs and for

the target.

A MAV starts a test with a certain amount of Energy Units (EUs) available.

During each time step it consumes 1EU , while moving 2GU along its heading direc-

tion. The rotations generated by the controller in the time unit are included within

the [−3.0 ◦; 3.0 ◦] range. It is worth noting that, in order to simulate a more realistic

flying behaviour, every time the aircraft performs a yaw manoeuvre a corresponding

inverse amount of roll is automatically applied. For example, whenever the con-

troller generates a +0.7◦ yaw, a corresponding rotation with magnitude −0.7◦ is

automatically applied around the Φ axis. This effect has only been implemented in

those experimental setups that include the possibility of independent rolling for the

aircraft.

6.2 Neural network controllers

Several topologies of neural network based controllers have been tested, as it will be

shown in more detail in Section 6.4.1.

The controllers used, for the most part, are made of fully connected feed-forward

neural networks embodied into the MAVs. These controllers are fed with input

information coming both from the external environment (location of the target)

and from within the robot (own orientation around the three axes, which is in turn

translated into relative orientation toward the target). This information is processed

by the network, which uses it to determine the activation level of the output units,

directly connected to the MAV’s motor actuators.

Despite the way in which many of the experimental setups are described in the

following pages, the aircraft will be somewhat limited in their behavioural capabil-

244

ities. This is demonstrated by the scenario with the greatest degree of freedom.

In this case, the output layer is composed of four neurons. Three of these units

(continuous) determine the rotations the MAV will perform in the time unit: yaw

(Ψo), pitch (θo), and roll (Φo). The remaining neuron (end) is the aforementioned

“end-operation” unit.

All of the non-input and non-Boolean neurons belonging to the network are

activated according to a log-sigmoid function (slope 1.0, see Equation 2.14), in

which output values are within [−1.0; 1.0]. Summation (see Equation 5.1) is the

only aggregation function used.

As before, the Boolean output can be activated only once during the entire

individuals’ life span. When this neuron turns to 1 - as well as when the MAV

exits from the environment boundaries, collides against a teammate, or runs out

of energy - the aircraft switches to “non-operative” mode. When no MAVs are

operative anymore, the current test epoch is immediately considered concluded. A

test of this type could be considered either successful or unsuccessful. In the case of

an activation of the end-operation unit by the last aircraft it would depend upon the

MAV-target distance when this event has taken place and also upon the requirements

of the experimental setup being analysed.

6.2.1 Encoding of the input information

With regard to the encoding of input information, we have to first identify the entire

set of inputs that the MAVs can receive at any time step. This data consists in:

∆Ψi, which is the MAV-target horizontal angle (i.e. the 2D angle calculated on the

X and Z axes and compared with the heading value Ψ); ∆θi which is the MAV-target

vertical angle (i.e. the 2D angle calculated on the X and Y axes and compared with

θ); Φi (a normalisation of the rough Φ value); di, which is the MAV-target distance.

All of these inputs can either assume continuous or discrete values according to

the architecture under examination. Before looking at the encoding used for the

different input information, we will highlight the ranges of ∆Ψ, which is [0◦; 360◦],

and the one used by both ∆θ and Φ, which corresponds to [−180◦; 180◦].

245

In relation to the MAV-target horizontal angle, its discretisation follows similar

rules to those employed in the 2D simulator, with the only difference consisting in

a more accurate decomposition of the space surrounding the MAV, which is now

done using 16 different subspaces. In order to map these subspaces, four neurons

are required. Gray code encoding, as shown in Table 6.3, has been used.

Table 6.3: Discretised encoding of the MAV-target horizontal angle

Original angle (∆Ψ) Discretised value (∆Ψi)
(x ≥ 348.75◦)||(x ≤ 11.25◦) 0000

11.25◦ < x ≤ 33.75◦ 0001
33.75◦ < x ≤ 56.25◦ 0011
56.25◦ < x ≤ 78.75◦ 0010
78.75◦ < x ≤ 101.25◦ 0110
101.25◦ < x ≤ 123.75◦ 0111
123.75◦ < x ≤ 146.25◦ 0101
146.25◦ < x ≤ 168.75◦ 0100
168.75◦ < x ≤ 191.25◦ 1100
191.25◦ < x ≤ 213.75◦ 1101
213.75◦ < x ≤ 236.25◦ 1111
236.25◦ < x ≤ 258.75◦ 1110
258.75◦ < x ≤ 281.25◦ 1010
281.25◦ < x ≤ 303.75◦ 1011
303.75◦ < x ≤ 326.25◦ 1001
326.25◦ < x ≤ 348.75◦ 1000

In the continuous form, the input for the neural network assumes instead a value

determined by Equation 6.1.

∆Ψi =

∆Ψ

180
, if∆Ψ ≤ 180◦

1− ∆Ψ− 180

180
, if∆Ψ > 180◦

(6.1)

The vertical MAV-target angle is discretised following the same principle used for

the encoding of the horizontal angle. The only differences, highlighted in Table 6.4,

are due to the different range of values this parameter can assume which can in turn

affect the discretisation map.

Equation 6.2 shows the simple formula used for the continuous normalisation

instead.

246

Table 6.4: Discretised encoding of the MAV-target vertical angle

Original angle (∆θ) Discretised value (∆θi)
(x ≥ −11.25◦)&&(x ≤ 11.25◦) 0000

11.25◦ < x ≤ 33.75◦ 0001
33.75◦ < x ≤ 56.25◦ 0011
56.25◦ < x ≤ 78.75◦ 0010
78.75◦ < x ≤ 101.25◦ 0110
101.25◦ < x ≤ 123.75◦ 0111
123.75◦ < x ≤ 146.25◦ 0101
146.25◦ < x ≤ 168.75◦ 0100

(x > 168.75◦)||(x ≤ −168.75◦) 1100
−168.75◦ < x ≤ −146.25◦ 1101
−146.25◦ < x ≤ −123.75◦ 1111
−123.75◦ < x ≤ −101.25◦ 1110
−101.25◦ < x ≤ −78.75◦ 1010
−78.75◦ < x ≤ −56.25◦ 1011
−56.25◦ < x ≤ −33.75◦ 1001
−33.75◦ < x ≤ −11.25◦ 1000

∆θi =
∆θ

180
(6.2)

The current roll angle is represented through a single neuron, both when dis-

cretised and when its value is used in a continuous way. The discretisation process

works in accordance with Table 6.5.

When the input is encoded in a continuous form, the normalisation is done

according to Equation 6.3.

Φi =
Φ

180
(6.3)

In the case of the MAV-target distance, this information is always encoded using

a single neuron, whether its values are discrete or continuous. The discretisation

process is made in accordance with Table 6.6.

When this input is kept continuous, the only reference used for the normalisa-

tion process is the maximum distance allowed by the environment. This distance

corresponds to 1, 900GU . The conversion is then performed through the formula in

Equation 6.4.

247

Table 6.5: Discretised encoding of the MAV bank angle

Original angle (Φ) Discretised value (Φi)
(x ≥ −2◦)&&(x ≤ 2◦) 0

2◦ < x ≤ 9◦ 0.05
9◦ < x ≤ 18◦ 0.1
18◦ < x ≤ 27◦ 0.15
27◦ < x ≤ 36◦ 0.2
36◦ < x ≤ 45◦ 0.25
45◦ < x ≤ 54◦ 0.3
54◦ < x ≤ 63◦ 0.35
63◦ < x ≤ 72◦ 0.4
72◦ < x ≤ 81◦ 0.45
81◦ < x ≤ 90◦ 0.5
90◦ < x ≤ 99◦ 0.55
99◦ < x ≤ 108◦ 0.6
108◦ < x ≤ 117◦ 0.65
117◦ < x ≤ 126◦ 0.7
126◦ < x ≤ 135◦ 0.75
135◦ < x ≤ 144◦ 0.8
144◦ < x ≤ 153◦ 0.85
153◦ < x ≤ 162◦ 0.9
162◦ < x ≤ 171◦ 0.95
171◦ < x ≤ 180◦ 1

(x ≥ −9◦)&&(x < −2◦) -0.05
−9◦ > x ≥ −18◦ -0.1
−18◦ > x ≥ −27◦ -0.15
−27◦ > x ≥ −36◦ -0.2
−36◦ > x ≥ −45◦ -0.25
−45◦ > x ≥ −54◦ -0.3
−54◦ > x ≥ −63◦ -0.35
−63◦ > x ≥ −72◦ -0.4
−72◦ > x ≥ −81◦ -0.45
−81◦ > x ≥ −90◦ -0.5
−90◦ > x ≥ −99◦ -0.55
−99◦ > x ≥ −108◦ -0.6
−108◦ > x ≥ −117◦ -0.65
−117◦ > x ≥ −126◦ -0.7
−126◦ > x ≥ −135◦ -0.75
−135◦ > x ≥ −144◦ -0.8
−144◦ > x ≥ −153◦ -0.85
−153◦ > x ≥ −162◦ -0.9
−162◦ > x ≥ −171◦ -0.95
−171◦ > x ≥ −180◦ -1

248

Table 6.6: Discretised encoding of the MAV-target distance

Distance (d) Discretised value (dd)
950 < d 0

633.3 < d ≤ 950 0.025
475 < d ≤ 633.3 0.05
380 < d ≤ 475 0.075

316.67 < d ≤ 380 0.1
271.43 < d ≤ 316.67 0.125
237.5 < d ≤ 271.43 0.15
211.11 < d ≤ 237.5 0.175
190 < d ≤ 211.11 0.2
172.72 < d ≤ 190 0.225

158.33 < d ≤ 172.72 0.25
146.15 < d ≤ 158.33 0.275
135.71 < d ≤ 146.15 0.3
126.67 < d ≤ 135.71 0.325
118.75 < d ≤ 126.67 0.35
111.76 < d ≤ 118.75 0.375
105.56 < d ≤ 111.76 0.4

100 < d ≤ 105.56 0.425
95 < d ≤ 100 0.45

90.48 < d ≤ 95 0.475
86.36 < d ≤ 90.48 0.5
82.61 < d ≤ 86.36 0.525
79.17 < d ≤ 82.61 0.55

76 < d ≤ 79.17 0.575
73.08 < d ≤ 76 0.6

70.37 < d ≤ 73.08 0.625
67.86 < d ≤ 70.37 0.65
65.52 < d ≤ 67.86 0.675
63.33 < d ≤ 65.52 0.7
61.29 < d ≤ 63.33 0.725
59.37 < d ≤ 61.29 0.75
57.57 < d ≤ 59.37 0.775
55.88 < d ≤ 57.57 0.8
54.28 < d ≤ 55.88 0.825
52.78 < d ≤ 54.28 0.85
51.35 < d ≤ 52.78 0.875

30 < d ≤ 51.35 0.9
15 < d ≤ 30 0.95
0 ≤ d ≤ 15 1.0

249

dc = 1− (d/1900); (6.4)

6.3 Evolutionary algorithm

Following what the ER paradigm dictates, the proper sets of synaptic weights and

biases for the neural network controllers to perform the desired tasks are obtained

by running a GA.

The starting population used consists of 30 individuals8, with connection weights

and biases randomly assigned at the beginning of the evolution within the [−10.0; 10.0]

range. The genome is implemented via parametric encoding, with each gene consti-

tuted by a real value, representing either a connection weight or a bias.

When all the members of the current generation have been evaluated according

to a proper fitness function, the five individuals that scored the best performances

are selected for reproduction. The best individual is copied to the next generation

without any modifications (elitism), and replicated in four offspring. The other

four selected individuals all generate five offspring each, originally identical to the

parents. All of the offspring (except for the one produced by the elitism operator)

are subject to a process of random mutation which affects each of their genes -

with probability 0.1 - by a uniformly distributed random value picked within the

[−0.05; 0.05] range.

Five new individuals, with a random set of connection weights and biases in

the [−10.0; 10.0] range, are introduced into any new generation to reduce the risk of

premature convergence within the population. The process is reiterated for a certain

amount of generations and then repeated from the scratch for a few times (we will

call each of this run “evolutionary seed” or “evolutionary run”) in order to obtain

results that are the least affected by randomness as possible.

8The relatively small number chosen for the population size is inspired by the tradition of the
“Sussex approach” [154] and preferred in this case over our previous approach because of the
increased complexity of the software simulator, which means, in turn, a longer time required for
the evolution.

250

6.4 Experiments

Using the model described above, three different experimental setups have been

elaborated. The details of these experiments and the results obtained are described

in the following subsections. As for the model described in previous chapter, the

experimental setups designed for the 3D simulator are of increasing complexity.

We have mentioned in the introduction of the current chapter that we will not be

using obstacles with this simulator. The reason behind this is that to evolve an

autonomous controller for navigating a 3D environment has proven to be a chal-

lenging issue in itself. We have therefore decided not to introduce, at least at this

stage, further elements making the experimental setups more complicated. In the

first scenario a static target is deployed inside the environment and the MAVs have

to navigate to it and, once there, to activate their “end-operation” unit as usual. In

the second scenario the target moves away from the approaching MAVs. Finally, the

third scenario requires cooperation amongst the MAVs, as at lest two of them are

required to approach the target (either stating or capable of moving) at the same

time

6.4.1 Basic scenario (simulations A)

The first scenario (simulations A, described in Ruini et al. [321, 323, 325]) acts as

an experimental benchmark. Other than evaluating whether the proposed approach

could work in a 3D scenario or not, what we are interested in investigating in this

first set of simulations are the performances generated by different neural network

topologies relying on contrasting input sets and internal organisations.

The scenario is quite basic, as it only consists of a single MAV navigating

through an obstacle-free environment looking for its way to the target. The MAV

has 5, 000EU to start with, thus being able to fly for a total of 10, 000GU . The

evolutionary process is iterated for 20, 000 generations9, with every controller being

tested four times. Ten evolutionary seeds are evaluated and their results averaged

9As for the 2D simulator, also in this new model the length of the evolutionary process has
been determined by empirical analysis carried out to evaluate how long the GA would require to
reach a steady state.

251

together.

Inspired by the analysis carried out by Zetule and presented in the previous

chapter, the fitness function used for measuring the performance of the controllers

in this setup has been modified and now just involves two parameters: α, which

represents the average value - across the four epochs of testing - for the difference

between the MAV-target distance at the beginning and at the end of a test (thus

representing the distance covered, as done in the study by Zetule); β, indicating

instead the overall number of tests succeeded. α is set to 0 in case the MAV has

concluded the test because it has exited from the environment boundaries (including

crashing on the ground) or ran out of energy. Equation 6.5 shows the simple way in

which these two parameters have been incorporated into the fitness function.

fitness = α + β ∗ 100 (6.5)

Differently to the fitness functions used in conjunction with the 2D model, Equa-

tion 6.5 can rarely assume negative values. This only happens when the MAVs some-

how manage to end a test farther to the target then they were at the beginning. As

soon as the aircraft start to approximate the completion of the task, the value of

α acts as a discriminant between competing controllers. β provides an additional

boost for the fitness evaluation of the controllers capable of completing the task

successfully.

Various neural network topologies have been tested. The variables that have

been used in the different architectures are:

• rotation axes : having the possibility to perform all the three rotations (yaw,

pitch, and roll) described or just a subset of these impacts the input/output

units present on the controller;

• short term memory : present/absent;

• hidden/internal layer : present/absent;

• input encoding : a discrete/continuous input information stream gathered from

the environment.

252

A summary of the 24 architectures analysed is reported in Table 6.7. When the

hidden layer is used, the number of neurons in it has been arbitrarily set to ten. The

presence or the absence of the hidden layer will also affect the way in which short

term memory structures are implemented. Elman networks [101] are used when

an internal layer of units is present and a Jordan [182] network when the topology

under examination does not include such a component.

Table 6.7: Neural network controller architectures tested

Architecture Pitch Roll Hidden layer Memory Input
1 No No No No D
2 No No No No C
3 Yes No No No D
4 Yes No No No C
5 Yes Yes No No D
6 Yes Yes No No C
7 No No Yes No D
8 No No Yes No C
9 Yes No Yes No D
10 Yes No Yes No C
11 Yes Yes Yes No D
12 Yes Yes Yes No C
13 No No No Jordan D
14 No No No Jordan C
15 Yes No No Jordan D
16 Yes No No Jordan C
17 Yes Yes No Jordan D
18 Yes Yes No Jordan C
19 Yes No Yes Elman D
20 Yes No Yes Elman C
21 Yes No Yes Elman D
22 Yes No Yes Elman C
23 Yes Yes Yes Elman D
24 Yes Yes Yes Elman C

Figures 6.3 illustrates from a graphical point of view the topologies of the most

representative controllers tested. For every architecture a corresponding simulation

has ben ran (A1 is the simulation experiment in which the controllers use topology

1, in A2 they rely on the architecture 2, etc.).

253

(a) (b)

(c) (d)

Figure 6.3: Some of the most representative NN topologies tested: (a) full I/O, no
hidden layer, no memory; (b) full I/O, hidden layer, no memory; (c) full I/O, no hid-
den layer, memory structure (Jordan); (d) full I/O, hidden layer, memory structure
(Elman). In all of these examples the architectures are supposed to accommodate
discrete input

Results

The desired behaviour has emerged from the evolutionary process in a relatively

limited number of generations for most of the experimental setups. An example of

the evolved behaviour is visible in Figure 6.4, while a summary of the main results

(average fitness, best fitness, average success rate, best success rate) is included in

Table 6.8. Looking at the data presented in this table, we can see that, among

all the simulations using architectures allowing yaw, pitch, and roll (A5, A6, A11,

A12, A17, A18, A23, and A24), A5 is the one that has produced the best results

both looking at the average success rate and to the efficiency of the best controllers

evolved.

254

Table 6.8: Simulations A: resume of the main results (average of the last 10 gener-
ations, based on 10 evolutionary runs)

Sim. Av. fitness Max. fitness
Percentage of tests
concluded successfully

Max. success
rate [%]

A1 986.2 1,425.6 80.26 100
A2 963.79 1,425 78.25 99.9
A3 856.52 1,393.4 62.84 99.15
A4 780.25 1,262.4 44.75 78.69
A5 711.82 1,310.5 46.41 93.28
A6 383.02 743.46 0.71 6.09
A7 988.63 1,425.6 79.52 100
A8 976.43 1,428.3 79.94 100
A9 827.56 1,386.3 61.61 99.72
A10 917.51 1,403.8 68.09 99.6
A11 693.23 1,267.9 40.95 87.39
A12 599.58 1,045.8 22.79 46.84
A13 974.59 1,421.3 78.48 100
A14 926.91 1,415.2 74.65 99.91
A15 715.75 1,266.4 39.82 82.8
A16 452.43 824.13 0.44 8.05
A17 389.93 824.98 2.1 17.27
A18 353.63 705.16 0.09 2.64
A19 790.91 1,345.8 59.8 97.74
A20 779.04 1,340.1 55.67 96.92
A21 447.12 916.26 9.04 32.63
A22 397.22 777.72 1.38 8.81
A23 319.87 715.71 0.83 8.54
A24 320.83 639.66 0.02 0.7

255

−500

0

500

−500

0

500

0

100

200

300

400

500

600

X

Flight paths followed by a team of 4 MAVs during a test

Z

Y

Starting position for MAV #0

Starting position for MAV #1

Starting position for MAV #2

Starting position for MAV #3

Target

Flight path followed by MAV #0

Flight path followed by MAV #1

Flight path followed by MAV #2

Flight path followed by MAV #3

End test position for MAV #0

End test position for MAV #1

End test position for MAV #2

End test position for MAV #3

Figure 6.4: Simulation A5: flight paths followed by four individual MAVs sharing
the same evolved controller, moving towards the target from the four corners of the
environment

Figure 6.5 displays the average and maximum fitness values across the 20, 000

generations elapsed. Both the curves tend to reach a steady state in between eight

and nine thousands generations. It is interesting to see how the values scored by

the best individuals are nearly twice as big as those registered by the average ones.

This effect is most likely due to the small population size adopted, as this makes the

impact of the individuals with random connection weights and biases introduced at

any new generation, generally performing badly, significantly higher.

Figure 6.6 shows the average success rate across the entire population at the

various generations, along with the success rate scored by the best controllers. The

stabilisation is achieved in 8−9, 000 generations for the average values only. The best

controllers keep evolving after that stage and the related curve takes slightly longer

(about 11,000 generations in total) to reach its maximum value (which corresponds

to over 93%).

Figure 6.7 focuses on the amount of energy left to the MAV when it has operated

the end-operation unit, averaged for the various tests. As expected the trend is

toward an increasing of the amount of energy saved across the generations. The

final state reached is not particularly stable, due to the fact that the target is always

256

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

200

400

600

800

1000

1200

1400
Average and maximum fitness

Generations

F
it
n

e
s
s
 v

a
lu

e

Average fitness

Maximum fitness

Figure 6.5: Simulation A5: average and best fitness (average of 10 evolutionary
runs)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

10

20

30

40

50

60

70

80

90

100
Percentage of tests concluded successfully

Generations

P
e

rc
e

n
ta

g
e

Average success rate

Best success rate

Figure 6.6: Simulation A5: percentage of successful tests (average of 10 evolutionary
runs)

257

deployed in random positions at the beginning of each test. This fact results in the

MAVs flying for different lengths of time, depending upon where the target has been

deployed. Using teams made of several MAVs could have overcome this problem,

but this is not necessarily the case, as the evolutionary process often tends to design

controllers that have “preferential” ways to approach the target (e.g. always navigate

to approach it from the right).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200
Av. energy amount left to the closest MAV having operated its end−operation unit

Generations

E
n

e
rg

y
 a

m
o

u
n

t

Figure 6.7: Simulation A5: amount of energy left to the MAV activating its end-
operation output unit closest to the target (average of 10 evolutionary runs)

The comparative analysis of the results will mainly focus on the data obtained

by the neural architectures that process the real time input without relying on any

memory structure, as they have clearly outperformed their competitors. Figure 6.8

shows a comparison between architectures 1-12 for what concerns the success rate

obtained by the best individual at the last generation.

Looking at this in more detail, it is noticeable that the sets of rotations made

available to the MAVs have a significant impact on their performance. When only

yaw is permitted (thus recreating a 2D scenario) controllers that are able to perform

the desired task with a 100% accuracy level emerge in just a few generations. The

same applies, although following a slightly slower process, when both yaw and pitch

are used. The introduction of roll has a significant impact and leads to worse

258

1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

90

100

Neural network architectures

P
e

rc
e

n
ta

g
e

Percentage of tests successfully performed by the best individual

Figure 6.8: Bar plot displaying the maximum success rate obtained by the best
individuals evolved with the various controller architectures deprived of memory
components. The standard error - calculated as standard deviation divided by the
number of evolutionary seeds ran - is also shown (average of the last 10 generations,
based on 10 evolutionary runs)

performances, these are acceptable for both architectures 5 and 11 (respectively

93.28% and 87.39% as maximum success rate), but are far below average for 6

(6%) and 12 (46.8%). Figures 6.9 and 6.10 compare the success rate of the various

architectures, grouped by the set of rotations they have available. The graphs show

the average and maximum success rate respectively.

For what concerns input encoding, discretised input has always led to better

or at wort equal results compared with continuous encoding. The difference is

particularly evident if contrasting the results scored by architectures 5 and 6, or 17

and 18. Figures 6.11 and 6.12 contrast the average and best success rates obtained

on average by architectures using discrete input against those relying on information

encoded in a continuous fashion.

The use of a hidden layer has proven to be beneficial for the performances of

the controllers when no memory structures are employed. With simulations A5 and

A11 being exceptions to this (in this case, architecture 5, without a hidden layer,

has performed better than its counterpart having internal neurons). The controllers

259

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Generations

P
e

rc
e

n
ta

g
e

Percentage of tests concluded successfully: average success rate

Yaw only (avg arch. A1, A2, A7, A8)

Yaw and pitch (avg arch. A3, A4, A9, A10)

Yaw, pitch and roll (avg arch. A5, A6, A11, A12)

Figure 6.9: Simulations A: comparison for the average success rate in function of
the sets of rotations available to the aircraft (average of 10 evolutionary runs)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generations

P
e

rc
e

n
ta

g
e

Percentage of tests concluded successfully: best success rate

Yaw only (avg arch. A1, A2, A7, A8)

Yaw and pitch (avg arch. A3, A4, A9, A10)

Yaw, pitch and roll (avg arch. A5, A6, A11, A12)

Figure 6.10: Simulations A: comparison for the maximum success rate in function
of the sets of rotations available to the aircraft (average of 10 evolutionary runs)

260

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Generations

P
e

rc
e

n
ta

g
e

Percentage of tests concluded successfully: average success rate

Discretised input (avg arch. A1, A3, A5, A7, A9, A11)

Continuous input (avg arch. A2, A4, A6, A8, A10, A12)

Figure 6.11: Simulations A: comparison for the average success rate in function of
the kind of encoding used for the input information (average of 10 evolutionary runs)

0 5 10 15 20 25 30 35 40 45 50

0.4

0.5

0.6

0.7

0.8

0.9

1

Generations

P
e

rc
e

n
ta

g
e

Percentage of tests concluded successfully: best success rate

Discretised input (avg arch. A1, A3, A5, A7, A9, A11)

Continuous input (avg arch. A2, A4, A6, A8, A10, A12)

Figure 6.12: Simulations A: comparison for the maximum success rate in function
of the type of encoding used for the input information (average of 10 evolutionary
runs)

261

with a layer of internal units have in fact outperformed the two-layer networks. The

situation is completely different when memory is used. In this case (but again with

one exception, constituted by the comparison between simulations A16 and A22)

the lack of a hidden layer seems to be beneficial. As before, this result could be

explained by the increase in dimensionality of the search space generated by the

addition of ten more neurons, with respective synaptic connections and biases. A

graphical summary of these results, highlighting the similarity in the data obtained,

can be found in Figures 6.13 and 6.14.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Generations

P
e

rc
e

n
ta

g
e

Percentage of tests concluded successfully: average success rate

Hidden layer absent (avg arch. A1, A2, A3, A4, A5, A6)

Hidden layer present (avg arch. A7, A8, A9, A10, A11, A12)

Figure 6.13: Simulations A: comparison for the average success rate in function of
the presence/absence of a hidden layer (average of 10 evolutionary runs)

Most likely due to the simplicity of the elaborated scenario, which does not re-

quire any additional ability for the MAV than just pointing to the target area, the

architectures providing memory to the controller have not generated any benefits.

Worse still, the controllers implementing Elman and Jordan networks have scored

significantly lower success rates than those based on purely feed-forward networks.

The performances are comparable only for the simplest situation (no pitch and

no roll), and partially for the second simplest setup (yaw and pitch, but no roll).

However this effect is probably due to the significantly larger search space the evo-

lutionary algorithm has to investigate in order to find an optimum point when the

262

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

Generations

P
e

rc
e

n
ta

g
e

Percentage of tests concluded successfully: best success rate

Hidden layer absent (avg arch. A1, A2, A3, A4, A5, A6)

Hidden layer present (avg arch. A7, A8, A9, A10, A11, A12)

Figure 6.14: Simulations A: comparison for the maximum success rate in function
of the presence/absence of a hidden layer (average of 10 evolutionary runs)

additional connection weights associated to the memory structures come into play.

Single and multi-threading performance comparison

One of the experimental setups described in this chapter has been exploited for

carrying out further, and more “technical”, experimentations. As we have mentioned

above, Gautier [131] has investigated the adoption of a multi-threading programming

approach to the 2D computer model presented in chapter 5, finding strong evidence

for an improvement of the evolutionary algorithm speed when such methodology is

employed. Utilising Gautier’s findings, we have therefore decided to optimise the

source code of the 3D simulator in order to allow it to benefit from the possible

execution on computers driven by multi-core processors (as it is the case for the grid

on which we have run our simulation experiments).

From a technical point of view, the adaptation of our simulator into a multi-

thread application has been made possible by the use of QtConcurrent10, a frame-

work within the Qt libraries which provides high-level APIs that make it possible to

write multi-threaded programs without the need to manually write low-level thread-

10http://doc.qt.nokia.com/latest/qtconcurrent.html

263

ing primitives.

We have performed a systematic comparison between identical simulations11 ex-

ecuted in single and multi-thread mode on different machines [322]. In this experi-

ment we have used one of the machines from the P-ARTS system, plus a standard

desktop computer (an Apple Mac Pro belonging to the “early 2008” generation,

equipped with a single 2.8GHz quad-core Intel Xeon processor).

The simulation used as a reference is A9, which has been evolved for ten seeds,

each of these 50 generations long. Table 6.9 shows the results obtained in terms of

execution times (measured in milliseconds).

Table 6.9: Simulation A9: comparison between single and multi-threading in terms
of execution times [MP: Mac Pro, XS: Xserve, ST/MT: single/multi-thread] (mea-
sured in msec)

Seed MP-ST (s) XS-ST (s) MP-MT (s) XS-MT (s) ∆MP (%) ∆XS (%)
1 115,959 116,370 34,818 27,943 -69.97 -75.99
2 154,174 154,548 70,539 15,467 -54.25 -89.99
3 155,169 155,705 38,774 32,041 -75.01 -79.42
4 148,620 149,216 43,214 34,274 -70.92 -77.03
5 155,831 159,446 75,149 21,021 -51.78 -86.82
6 211,174 212,136 44,934 24,225 -78.72 -88.58
7 165,884 166,569 61,842 45,306 -62.72 -72.8
8 216,879 217,586 52,754 38,534 -75.67 -82.29
9 69,081 69,417 25,706 18,206 -62.79 -73.77
10 102,108 102,555 36,730 20,634 -64.03 -79.88

Avg 149,487.9 150,355 48,446 27,765.1 -66.59 -80.66

Despite the differences in the frequency at which the two processors run and the

variations in the two internal computer architectures, the single-threaded version of

the simulator has obtained virtually identical execution times on the two computers

used.

Figures 6.15 and 6.16 compare the execution times obtained by the simulation

that was run in single and multi-threading configurations on the two machines used

for the experiments.

First of all, as expected, the execution time drops when moving from single to

11With the word “identical” we refer to simulations for which the random number generator has
been initialised on the same value, thus producing identical sequences of pseudo-random numbers.

264

Figure 6.15: Comparison between single and multi-threading in terms of execution
speed (measured in msec) on the Apple Mac Pro machine

Figure 6.16: Comparison between single and multi-threading in terms of execution
speed (measured in msec) on the Apple Xserve machine

265

multi-threading. The improvement has been significantly greater for the Xserve

machine than for the Mac Pro one because of the larger number of processing cores

available (eight rather than four). On the Mac Pro machine the execution time has

been reduced by 66.59%, while on the Xserve machine the improvement has been

calculated as −80.66%. These are slightly further from the theoretical maxima, that

are respectively −75% and −87.5%, but considering that a certain overhead has to

be taken into account and that multi-threading has been implemented in the easiest

way possible (which is not likely to be the most efficient way) the results can be

considered rather good.

6.4.2 Moving target (simulations B)

The second experimental setup prepared (simulations B, presented in Ruini et

al. [323]) is similar to the previous one. The only difference consists in the fact

that now the designated target can move away from the approaching MAV. At any

time step the target can be in either one of two different states: “MAV detected”

or “MAV not detected”. When in “MAV not detected” mode, the target scans its

surroundings at any time step - before the aircraft moves - looking for a vehicle

within a 35GU distance from its centre. In the case of this condition being satisfied,

the target switches to “MAV detected” mode with probability 0.5. When the target

is in the “MAV detected” state, it has to move into a new place. This movement is

alternated with the one made by the MAV at any time step.

Table 6.10 shows the 26 different locations the target can chose between when

deciding in which direction to move, based on its current (X, Y, Z) coordinates.

These points are calculated in order to ensure they are equidistant from its centre

(i.e. points on the surface of an imaginary sphere sharing its origin with the centre

of the target and having a ray equal to its movement speed) and representative of

the entire neighbourhood area the target could end up in. The target does not have

any kind of preference and its movements are not affected by inertia: at any time

step it simply moves to the position which will maximise its distance from the MAV.

266

Table 6.10: Simulations B: possible movement destinations for the target

New X New Y New Z
X Y Z + d

X + d ∗ cos(π
4
) Y Z + d ∗ sin(π

4
)

X + d Y Z
X + d ∗ cos(3

4
π) Y Z − d ∗ sin(3

4
π)

X Y Z − d
X − d ∗ cos(−3

4
π) Y Z − d ∗ sin(−3

4
π)

X − d Y Z
X − d ∗ cos(−π

4
) Y Z + d ∗ sin(−π

4
)

X Y + d Z
X Y + d ∗ cos(π

4
) Z + d ∗ sin(π

4
) ∗ cos(0)

X + d ∗ sin(π
4
) ∗ sin(π

4
) Y + d ∗ cos(π

4
) Z + d ∗ sin(π

4
) ∗ cos(π

4
)

X + d ∗ sin(π
4
) ∗ sin(π

2
) Y + d ∗ cos(π

4
) Z

X + d ∗ sin(π
4
) ∗ sin(3

4
π) Y + d ∗ cos(π

4
) Z − d ∗ sin(π

4
) ∗ cos(3

4
π)

X Y + d ∗ cos(π
4
) Z − d ∗ sin(π

4
) ∗ cos(π)

X − d ∗ sin(π
4
) ∗ sin(−3

4
π) Y + d ∗ cos(π

4
) Z − d ∗ sin(π

4
) ∗ cos(−3

4
π)

X − d ∗ sin(π
4
) ∗ sin(−π

2
) Y + d ∗ cos(π

4
) Z

X + d ∗ sin(π
4
) ∗ sin(−π

4
) Y + d ∗ cos(π

4
) Z + d ∗ sin(π

4
) ∗ cos(−3

4
π)

X Y − d Z
X Y − d ∗ cos(π

4
) Z + d ∗ sin(π

4
) ∗ cos(0)

X + d ∗ sin(π
4
) ∗ sin(π

4
) Y − d ∗ cos(π

4
) Z + d ∗ sin(π

4
) ∗ cos(π

4
)

X + d ∗ sin(π
4
) ∗ sin(π

2
) Y − d ∗ cos(π

4
) Z

X + d ∗ sin(π
4
) ∗ sin(3

4
π) Y − d ∗ cos(π

4
) Z − d ∗ sin(π

4
) ∗ cos(3

4
π)

X Y − d ∗ cos(π
4
) Z − d ∗ sin(π

4
) ∗ cos(π)

X − d ∗ sin(π
4
) ∗ sin(−3

4
π) Y − d ∗ cos(π

4
) Z − d ∗ sin(π

4
) ∗ cos(−3

4
π)

X − d ∗ sin(π
4
) ∗ sin(−π

2
) Y − d ∗ cos(π

4
) Z

X + d ∗ sin(π
4
) ∗ sin(−π

4
) Y − d ∗ cos(π

4
) Z + d ∗ sin(π

4
) ∗ cos(−3

4
π)

AssumingMs the speed of the MAV, five different evolutions have been performed

for each architecture, with the target moving respectively at a speed Ts equal to
Ms

5
,

Ms

4
,
Ms

3
,
Ms

2
and Ms. Differently than what we have done with the 2D model, we

have decided to test a new condition in which the target and the aircraft move at the

same speed. At the same time we have decided to ignore moving speeds of the target

lower than
Ms

5
, as we could not find any significant difference in the performance

of the controllers evolved in 2D scenario dealing with targets slower than a certain

threshold.

This experimental setup has been tested with 12 different topologies of neu-

rocontrollers (1-12 introduced in previous paragraph), running twelve simulations

(B1-B12) five times each (one for each possible target’s speed). Considering the poor

267

performances generated in the experimental setup A by the architectures including

memory structures, these have been ignored at this stage. In principle, it is true

that memory structures could be extremely useful in tasks like target tracking, but

this is only valid when the autonomous vehicles have to “understand” the path the

target is following in order to predict the target’s moves and attempt to anticipate

them. Based on the movement rules for the target we have listed above, in our

opinion this one would not be the case. As the target can move, at every time step,

in any direction it likes, there is very little room for anticipation, thus very little

to be gained by the implementation of a memory structure into the neural network

controller.

To cope effectively with the very high degree of variance in the data that has been

highlighted by some preliminary tests, the amount of evolutionary seeds elaborated

has been extended to 20.

Results

The results presented in this section concern simulations C11 and C5 (relying on

architectures 11 and 5 respectively), those that generated the best results in simu-

lations A respectively for the subsets of networks with and without a hidden layer,

and that allow the aircraft to yaw, pitch and roll.

As expected, varying the speed of the target has affected the MAVs’ perfor-

mances. The results are similar to those obtained with our previous work on the

2D simulator (see section 5.4.3). Apart from a general performance decrease if com-

pared to the scenario in which the target is static, what we can observe again is the

emergence of a threshold value for Ts that, once exceeded, makes on average the

MAV unable to succeed in the task with a high degree of accuracy anymore. For

targets moving at
Ms

5
,
Ms

4
and

Ms

3
, the success rate for the best individual of the

population is over 85%, both when the architecture is lacking a hidden layer (Fig-

ure 6.17), and when the network can rely on this additional computational capability

(Figure 6.18).

More specifically, the percentage of tests concluded successfully ranges from

268

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

10

20

30

40

50

60

70

80

90

100

Generations

P
e

rc
e

n
ta

g
e

Percentage of tests successfully performed by the best individual

Target speed = MAV speed

Target speed = MAV speed / 2

Target speed = MAV speed / 3

Target speed = MAV speed / 4

Target speed = MAV speed / 5

Figure 6.17: Simulation B5: comparison for the success rate (average of 20 evolu-
tionary runs)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

10

20

30

40

50

60

70

80

90

100

Generations

P
e

rc
e

n
ta

g
e

Percentage of tests successfully performed by the best individual

Target speed = MAV speed

Target speed = MAV speed / 2

Target speed = MAV speed / 3

Target speed = MAV speed / 4

Target speed = MAV speed / 5

Figure 6.18: Simulation B11: comparison for the success rate (average of 20 evolu-
tionary runs)

269

86.57% to 95.71%. A target moving at
Ms

2
results in a much more difficult task

for MAVs, with the two simulations respectively scoring 54.03% and 59.85%. As

expected, when the target and the MAV move at the same speed (Ts = Ms), the

latter practically never succeed in the task. As nature teaches us, it can indeed only

happen by chance (e.g. because the prey gets stuck in some particular area of the

environment) that a hunter could reach his prey if they both run at the same speed.

This is even more true when the prey is hardwired for the best escaping efficiency

possible as in our experimental setup.

Tables 6.11 and 6.12 summarise the results generated by simulations for simu-

lations B5 and B11 respectively. What is interesting to see is how architecture 5

performed better than architecture 11 in terms of success rate also in this scenario,

despite being more limited in terms of “computational capabilities.”

Table 6.11: Simulation B5: resume of the main results (average of the last 10
generations, based on 20 evolutionary runs)

Ts Av. fitness Max. fitness
Percentage of tests
concluded successfully

Max. success
rate [%]

Ms 547.89 953.116 0.000002 0.0008
Ms

2
663.47 1, 149.3 22.31 54.03

Ms

3
736.55 1, 297.2 43.26 89

Ms

4
747.49 1, 309.2 47.23 94.4

Ms

5
728.34 1, 323.9 48.94 95.71

Table 6.12: Simulation B11: resume of the main results (average of the last 10
generations, based on 20 evolutionary runs)

Ts. Av. fitness Max. fitness
Percentage of tests
concluded successfully

Max. success
rate [%]

Ms 553.4 947.63 0.000002 0.0006
Ms

2
659.69 1, 150.5 22.43 59.85

Ms

3
724.51 1, 269.4 40.86 86.57

Ms

4
731.98 1, 280.5 43.53 84.88

Ms

5
731.99 1, 296.3 44.38 90.83

270

6.4.3 Implicit cooperation (simulations C)

Simulations C involve cooperation among the MAVs, replicating in the new three-

dimensional model the scenario described in section 5.4.4, except for two main differ-

ences: 1) the absence of obstacles into the environment; 2) the “stationarity” of the

target which, in this scenario, is not able to move. The setup is more complicated

than the one presented in simulations A and B because of the fact that rather than

one single MAV, teams made by four MAVs sharing the same controller are now

employed. In order to accomplish the task, at least two MAVs need to approach the

target area and activate their Boolean neurons in quick succession. From a tech-

nical point of view, these modifications in the experimental setup have been coped

with imposing that the target can be, at any given time, in either one out of two

possible alternative states: either “healthy” or “damaged.” The target starts each

test as “healthy” but can be damaged later on during the task. The damaging of

the target takes place when a MAV activates its Boolean unit within 15GU from

the target centre. The test is considered to be successfully concluded when another

MAV manages to correctly approach the target (by activating the end-operation unit

when close enough to it) when the latter is still “damaged”. In order to guarantee

the semi-synchronicity of the process, the target gets restored (i.e. switches back to

the “healthy” status) after 200 time-steps of “damaged” mode.

The controllers used in this scenario (C1-C12, built on top of the 1-12 controllers

seen at work for simulations A) have been modified to deal with the new conditions

by introducing two new input units, specifically two Boolean neurons. These units

respectively get activated when the target is in “damaged” status, and when a

teammate is perceived within a certain distance range (60GU) from the aircraft

embedding the controller. Figure 6.19 shows the topology of two of the modified

neurocontrollers, C5 and C11, derived from architectures 5 and 11 respectively.

The motion of the MAVs has been modified as well, in order to allow for wider

rotation angles. At any time-step they now move just 1GU rather than 2 as in the

previous setups, thus indirectly doubling their manoeuvring range. The amount of

energy available to the MAVs at the beginning of a test has been increased from

271

(a) (b)

Figure 6.19: Graphical representation of the NN controllers (a) C5; (b) C11. The
two new input units, labelled “tmt” and “tgt” respectively, are those in charge of
informing the controller about the presence of a teammate within a certain distance
range and signalling the status of the target (“healthy” or “damaged”)

5, 000EU to 15, 000EU , in order to ease the evolution of the behaviour we have seen

emerging in the 2D model (with one of the MAVs flying for a certain amount of

time around the target waiting for a teammate to arrive).

The fitness function also has required a minor modification in order to cope

with the new dynamics and the fact of having MAV teams rather than individual

MAVs involved in the evolutionary process. Compared to Equation 6.5, Equation 6.6

introduces a new parameter, γ, which represents the amount of tests concluded half-

successfully, i.e. with one single MAV managing to properly approaching the target.

In this way the MAVs are also rewarded for approaching successfully the target,

even without being able to conclude a test successfully. The rewards, obviously,

become higher if they manage to perform the cooperative operation required. The

α parameter has been modified to 〈α〉, thus indicating that it is now representing

the average distance traveled by all the four MAVs during the all tests.

f = 〈α〉+ 50γ + 100β (6.6)

As in simulation B, the experiments have been carried out using 12 neural archi-

tectures only, i.e. all of those that do not rely on short-term memory elements and

272

modified with the introduction of two additional Boolean input units as described

above.

Results

The strategy evolved by the best individuals is the same one observed in section 5.4.4.

To be precise, the first MAV arriving in the proximity of the target does not activate

its Boolean unit immediately. Instead it starts flying around the target area, waiting

for another aircraft to arrive. When a teammate finally arrives, they both get as

close as possible to the target and activate their Boolean neurons thus accomplishing

the test. An example of this behaviour, observed from a top view, can be found in

Figure 6.20. Figure 6.21 provides instead a three-dimensional view of the flight paths

followed by a team of four MAVs driven by a different controller, but performing

the same task.

Unfortunately, this behaviour has demonstrated to be particularly hard to be

achieved in the 3D model. Simulations carried out using controllers based on archi-

tectures 1, 2, 7, and 8 (no pitch and roll rotations available) have generally generated

decent performances (success rates for the best individual have been 89.71%, 39.9%,

93.06%, and 75.38% respectively). Nonetheless the performance of the MAVs has

dramatically decreased when the wider sets of rotations available to the MAVs have

been introduced. Figure 6.22 shows the results obtained evolving controllers based

on architecture 5 (yaw, pitch, and roll possible). In this case, the best team can

successfully conclude the task 12.79% of the time (just 2.04% for the average team),

and simply manages to put the target in “damaged” status the remaining 58.23%

of times.

Table 6.13 summarises the results obtained for the 12 neural architectures tested.

6.5 Experiments on incremental evolution

In section 2.5 we have introduced the topic of incremental evolution. The discussion

we carried out concluded that to this day is still extremely difficult to provide a

definitive answer to the dilemma of whether incremental evolution is “better” or

273

−500

−400

−300

−200

−100

0

100

200

300

400

500

−600−400−2000200400600

Flight paths followed by a team of 3 MAVs during a test

X

Y

Starting position for MAV #0

Starting position for MAV #1

Starting position for MAV #2

Target

Flight path followed by MAV #0

Flight path followed by MAV #1

Flight path followed by MAV #2

End test position for MAV #0

End test position for MAV #1

End test position for MAV #2

Figure 6.20: Simulation C2: flight paths followed by three individual MAVs sharing
the same controller, and put into the environment at the same time, but moving
from different starting positions. In this case MAV #0 is the first to arrive in the
proximity of the target area in (−280, 360). It then starts flying around it, while
waiting for the arrival of a teammate in order to successfully conclude the test

Table 6.13: Simulations C: resume of the main results (average of the last 10 gener-
ations, based on 20 evolutionary runs)

Sim. Av. fitness Max fitness
Av. succ.
rate [%]

Max succ.
rate [%]

Approach
rate [%]

C1 1, 106.8 1, 701 46.72 88.14 36.69
C2 1, 011.4 1, 505.3 31.64 58.18 43.16
C3 742.58 1, 155.2 9.23 33.61 61.8
C4 571.6 843.57 0.81 6.41 64.51
C5 429.63 662.93 0.59 4.79 34.24
C6 377.15 593.19 0.15 2.05 27.31
C7 1, 008.4 1, 628.3 42.66 84.25 29.26
C8 1, 228.2 1, 834.6 53.91 91.84 17.54
C9 696.34 1, 106 8.52 31.99 56.72
C10 701.98 1, 016.8 1.36 12.03 70.09
C11 367.98 607.84 0.27 3.26 35.89
C12 589.48 893.63 2.14 13.56 53.74

274

−500

0

500

−500

0

500

0

100

200

300

400

500

600

X

Flight paths followed by individuals evolved with neural controller #10

Y

Z

Starting position for MAV #0

Starting position for MAV #1

Starting position for MAV #2

Starting position for MAV #3

Position of the target

Flight path followed by MAV #0

Flight path followed by MAV #1

Flight path followed by MAV #2

Flight path followed by MAV #3

End position for MAV #0

End position for MAV #1

End position for MAV #2

End position for MAV #3

Figure 6.21: Simulation C5: flight paths followed by four individual MAVs sharing
the same controller

not than direct evolution. The study presented in this section, in which incremental

and non-incremental evolution approaches are compared for the 3D model discussed

so far, aims to give an additional contribution to the topic with the awareness that

it is difficult to provide any conclusive answer due to the amount of variables that

should be taken into account for a comprehensive and definitive analysis.

6.5.1 Basic results for A, B, and C setups

For the comparative analysis between incremental and non-incremental evolution

four new evolutionary processes have been run spanning the three experimental

setups detailed in the previous pages. All the architectures have been subject to

this test, except for those endowing memory structures (apart from those already

mentioned, detailed reasons for this choice have been explained in Ruini et al. [324]).

Evolutions in scenarios A and B have been performed for different numbers

of generations according to the complexity (intended as the number of connection

weights) of the neural network controllers used: 5, 000 generations for architectures

1, 2, 7, and 8; 10, 000 generations for topologies 3, 4, 9, and 10; 20, 000 generations

for controllers 5, 6, 11, and 20.

275

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

10

20

30

40

50

60
Percentage of successfully (and half−successfully) carried out tests

Generations

P
e

rc
e

n
ta

g
e

Tests successfully carried out (average)

Tests successfully carried out (best)

Tests completed at 50% (average)

Figure 6.22: Simulation C5: percentage of successful and half-successful tests for
the average and the best MAVs (average of 20 evolutionary runs)

Given Ms the speed of the MAV, different evolutionary processes have been

elapsed for each architecture in scenario B, with the target moving at speeds Ts

equal to
Ms

2
and

Ms

3
respectively.

The results obtained for scenario A are summarised in Table 6.14, while Ta-

bles 6.15 and 6.16 show the outcome of the simulations carried out within the B

scenario for Ts equal to
Ms

2
and

Ms

3
respectively.

The two tables show the average fitness values scored by the entire population

at the end of the evolution, as well as the maximum (i.e. the best individual’s fit-

ness). The average and best success rates (intended as percentage of tests concluded

successfully) are also reported. Since at any given generation five new random in-

dividuals are introduced (corresponding to 16.66% of the entire population, which

consists in 30 individuals), the average success rate, as expected, never gets better

than 83.34%.

The results obtained are not surprising. As expected, because of the previous ex-

periments carried out, the complexity of the controllers used affects the performance

of the MAVs. For the simplest 2D scenario (architectures A1, A2, A7, and A8) all

the topologies produce good results, leading to MAVs able to successfully perform

276

Table 6.14: Simulations A: resume of the new main results (average of the last 10
generations, based on 10 evolutionary runs)

Sim. Av. fitness Max. fitness
Percentage of tests
concluded successfully

Max. success
rate [%]

A1 978.49 1, 420.9 79.76 100
A2 989.28 1, 426.5 81.71 100
A3 904.17 1, 413.3 69.63 99.92
A4 858.61 1, 331.4 56.77 89.16
A5 749.73 1, 309.5 48.91 94.19
A6 602.73 1, 050.9 18.57 46.93
A7 1, 005.3 1, 428.6 82.35 100
A8 997.06 1, 430.6 82.36 100
A9 881.67 1, 399.3 66.65 99.9
A10 934.68 1, 413.7 72.47 99.86
A11 688.29 1, 272 42.09 85.56
A12 6423.88 1, 111.8 31.04 65.56

Table 6.15: Simulations B (non-incremental setup, Ts =
Ms

2
): resume of the new

main results (average of the last 10 generations, based on 10 evolutionary runs)

Sim. Av. fitness Max. fitness
Percentage of tests
concluded successfully

Max. success
rate [%]

B1 976.21 1, 421 80.01 100
B2 976.97 1, 420 78.23 100
B3 855.36 1, 386.6 59.82 99.79
B4 744.23 1, 252 40.76 81.97
B5 645.6 1, 158.3 28.49 59.69
B6 551.61 996.78 15.97 39.6
B7 983.84 1, 421.7 79.14 100
B8 933.41 1, 430.4 81.4 100
B9 756.33 1, 323.7 50.35 96.42
B10 851.72 1, 336.5 53.76 87.24
B11 643.11 1, 126.9 18.07 58.29
B12 700 1, 162.4 33.84 66.09

277

Table 6.16: Simulations B (non-incremental setup, Ts =
Ms

3
): resume of the new

main results (average of the last 10 generations, based on 10 evolutionary runs)

Sim. Av. fitness Max. fitness
Percentage of tests
concluded successfully

Max. success
rate [%]

B1 979.82 1, 422.8 79.48 100
B2 991.54 1, 426.2 81.77 100
B3 889.18 1, 407.7 69.18 100
B4 787.94 1, 258.3 43.85 79.98
B5 673.22 1, 212.7 33.54 71.37
B6 596.25 1, 063.5 20.01 52.55
B7 995.34 1, 428.3 80.81 100
B8 994.91 1, 431.4 81.53 100
B9 806.97 1, 354.3 54.97 97.85
B10 951.20 1, 417 72.76 100
B11 577.7 1, 090.6 19.55 48.29
B12 744.16 1, 241.6 44.35 81.23

the task 100% of the time. The 3D scenario where only yaw and pitch are allowed

(controllers A3, A4, A9, and A10) also proved to be not particularly challenging for

the evolutionary process. The average success rate for the entire population slightly

decreases but the best controllers still can, among all the cases, perform at least

80% of tasks with success. Things get more complicated when using controllers A5,

A6, A11, and A12 (i.e. adding roll among the possible rotations available to the

aircraft) and the results are unclear. In the A Scenario the discretisation of the

input information seems to have a clearly positive impact on the performances of

the controllers. For Scenario B we find instead evidence of both positive and nega-

tive impacts. Curiously, some of the controllers (e.g. A10) have evolved with more

accurate behaviours for Scenario B (Ts =
Ms

3
) than for Scenario A.

The evolution in Scenario C, due to the requirement for the evolution of more

complex behaviours, has been run for: 10, 000 generations for architectures A1, A2,

A7, and A8; 20, 000 generations for architectures A3, A4, A9, and A10; 40,000

generations for architectures A5, A6, A11, and A12. The results from this setup are

presented in Table 6.17. In this case the table contains an extra column indicating

the percentage of tests concluded half-successfully, i.e. with at least one MAV having

properly reached the target, but not two or more MAVs having done the same in a

278

coordinated fashion.

Table 6.17: Simulations C (non-incremental setup): resume of the new main results
(average of the last 10 generations, based on 10 evolutionary runs)

Sim. Av. fitness Max fitness
Av. succ.
rate [%]

Max succ.
rate [%]

Approach
rate [%]

C1 1, 106.8 1, 701 46.72 88.14 36.69
C2 1, 011.4 1, 505.3 31.64 58.18 43.16
C3 709.269 1, 104.2 6.48 28.34 59.14
C4 683.148 948.38 0.37 6.36 76.36
C5 645.664 1015.2 5.33 23.9 57.94
C6 582.288 822.92 0.2 38.6 51.28
C7 1, 008.4 1628.3 42.66 84.25 29.26
C8 1, 228.2 1834.6 53.91 91.84 17.54
C9 743.587 1131.5 7.47 28.44 62.01
C10 752.741 1153.4 6.62 27.78 64.7
C11 562.598 917.09 3.65 18.55 47.13
C12 764.835 1123.9 5.8 23.16 67.7

As before, these results highlight worse performances scored by the controllers

than those obtained within Scenarios A and B. The new task is indeed more com-

plicated, since on top of the basic navigation behaviour the aircraft are now also

required to coordinate amongst themselves. The difficulty is testified by the data

relative to the maximum success rate obtained by the controllers in C that score

good performances only for architectures A1, A2, A7, and A8, i.e. those in which

the limited rotations available to the MAVs make the task relatively easier.

6.5.2 The incremental approach

The way in which an incremental approach has been introduced in this work is

particularly straightforward. Incrementally evolving from Scenario A to B the con-

nection weights and biases of the individuals belonging to the last generation of the

best population evolved in A are loaded from the memory and used as starting point

for the new evolutionary process. Things are slightly more complicated moving from

Scenario A to C, because of the different network topologies used in the latter. In

this case, the connection weights coming from the two extra input neurons are added

to the A controllers and their associated values are set to 0 at the beginning of the

279

second stage of the evolutionary process (as suggested by Tomko & Harvey [368]).

Results of incremental evolution from scenario A to B

Starting from populations of individuals already evolved within the A scenario, the

results demonstrate how 5, 000 generations of further evolution are enough to allow

these individuals to generalise their target reaching abilities to moving targets as

well. Therefore allowing performances comparable to those obtained with direct

evolution in the B scenario.

The only situations in which this effect does not take place are when controllers

A5 and A6 are used (furthermore, for these two architecture the performance of the

controller dramatically decreases). Controller A10 is also affected due to the fact

that a target moving at half the speed of the MAVs, generates worst results when

incrementally evolved than when direct evolution is employed.

The absolute results obtained are summarised in Tables 6.18 and 6.19 for Ts of

Ms

2
and

Ms

3
respectively. Tables 6.21 and 6.22 show the comparison between the

incremental and the non-incremental results.

Table 6.18: Simulations B (incremental setup from A to B, Ts =
Ms

2
): resume of

the main results (average of the last 10 generations, based on 10 evolutionary runs)

Sim. Av. fitness Max. fitness
Percentage of tests
concluded successfully

Max. success
rate [%]

A-B 1 955.64 1, 428.1 82 100
A-B 2 1, 002.6 1, 434.1 81 100
A-B 3 864.54 1, 378.6 54.77 98.5
A-B 4 783.57 1, 321 52.64 96.67
A-B 5 602.36 1, 110.4 13.58 49.75
A-B 6 579.55 970.23 1.16 14.85
A-B 7 1, 007.4 1, 435.3 82.28 100
A-B 8 999.05 1, 434 81.64 100
A-B 9 877.67 1.393.3 63.06 99.6
A-B 10 688.51 1, 149.1 23.59 53.17
A-B 11 554.38 1, 167.4 30.26 81.08
A-B 12 772.39 1, 298.9 45.16 94.72

280

Table 6.19: Simulations B (incremental setup from A to B, Ts =
Ms

3
): resume of

the main results (average of the last 10 generations, based on 10 evolutionary runs)

Sim. Av. fitness Max. fitness
Percentage of tests
concluded successfully

Max. success
rate [%]

A-B 1 952.86 1, 408.7 75.46 99.65
A-B 2 994.81 1, 432.1 81.83 100
A-B 3 928.29 1, 413.3 62.71 99.85
A-B 4 851.27 1, 359.3 57.77 95.7
A-B 5 624.53 1, 143.5 19.71 58.88
A-B 6 597.66 964.96 0.53 8.67
A-B 7 978.43 1, 424.5 79.31 100
A-B 8 995.91 1, 432.1 82.22 100
A-B 9 887.86 1, 400.9 64.54 100
A-B 10 741.83 1, 321.9 44.66 94.05
A-B 11 611.16 1, 237.6 38.62 91.03
A-B 12 796.49 1, 333.7 50.18 96.42

Results of incremental evolution from scenario A to C

In this case the incremental evolutionary process has lasted for 10, 000 generations,

twice the duration of the one used for the B scenario, due to the more sophisticated

neural architectures used. The absolute results are summarised in Table 6.20, while

Table 6.23 shows the comparison between the incremental and the non-incremental

results. At a first glance it is possible to see how the controllers evolved via incre-

mental evolution do not score impressive results.

281

Table 6.20: Simulations C (incremental setup from A to C): resume of the main
results (average of the last 10 generations, based on 10 evolutionary runs)

Sim. Av. fitness Max fitness
Av. succ.
rate [%]

Max succ.
rate [%]

Approach
rate [%]

1 1, 139.8 1725.5 48.93 90.01 34.01
2 1, 347.2 1904.7 62.57 99.03 20.62
3 692.94 1046.9 4.77 22.99 68.16
4 512.01 755.6 0.23 4.28 66.39
5 475.42 742.07 0.58 7.11 47.88
6 545.11 929.72 2.89 18.73 30.52
7 1, 196.9 1, 776.6 52.88 92.89 30.58
8 1, 386.5 1, 921.5 65.43 99.62 17.82
9 699.83 1, 076.4 7.31 26.93 60.6
10 710.44 1, 058.3 4.09 18.96 67.22
11 400.55 654.01 0.84 6.46 35.19
12 568.79 910.57 3.09 14.59 53.39

Analysis of the results for incremental evolution

Regarding incremental evolution from A to B, the critical variable for the success

of the incremental approach seems to be the complexity of the neural architecture

used. For simple networks, as controllers A1-A6 are (feed-forward NNs without

hidden layers), the effect seems to be limited. More complex architectures bene-

fited much more from the incremental process instead. This phenomenon is evident

comparing the results scored by architectures A5 and A6 against controllers A11

and A12. The average success rate of controller A5 dropped by 52.33% and 41.23%

for Ts =
Ms

2
and Ts =

Ms

3
respectively, while architecture A6 scored -92.74% and

-97.35%. On the other end, the performance of controller A11 increased by 67.46%

and 97.54%; architecture A12 improved as well, scoring +33.45% and +13.15%. The

simplest architectures - A1 and A2, as well as A7 and A8 - do not show any sig-

nificant difference in the results obtained following the two alternative approaches,

presumably because the ability to perform the task (which, for these controllers,

is essentially 2D navigation) is easily learnt and direct evolution has already found

close to optimal solutions. Things are more interesting and varied for the archi-

282

tectures of intermediate complexity, such as A3, A4, and A912. Architectures A4

and A9 improved their performances among all the parameters measured, for both

Ts =
Ms

2
and Ts =

Ms

3
. For architecture A3 the fitness values scored (both average

and maximum) are fairly similar among direct and incremental evolution, but the

average and maximum success rates decreased.

Table 6.21: Comparison between incremental (A to B) and non-incremental (B)

evolution (Ts =
Ms

2
) (average of the last 10 generations, based on 10 evolutionary

runs)

Arch. Av. fitness Max. fitness
Percentage of tests
concluded successfully

Max. success
rate [%]

1 −2.11% +0.50% +1.65% 0%
2 +2.62% +0.99% +4.82% 0%
3 +1.07% −0.58% −8.44% −1.29%
4 +5.29% +5.51% +29.15% +17.93%
5 −6.70% −4.14% −52.33% −16.65%
6 +5.06% −2.66% −92.74% −62.50%
7 +2.40% +0.96% +3.97% 0%
8 +7.03% +0.25% +0.29% 0%
9 +16.04% +5.26% +25.24% +3.30%
10 −19.16% −14.02% −56.12% −39.05%
11 −13.80% +3.59% +67.46% +39.10%
12 +10.34% +11.74% +33.45% +43.32%

Opposite results have been obtained by the incremental evolution from A to C,

i.e. the further evolution of an architecture specialised in basic navigation to perform

a cooperative task. In this case, the only controllers that have gained an advantage

from the second evolutionary process have been the simplest ones: A1, A2, A7,

and A8. All of the other’s architectures (with the only exception of controller A6,

for which direct evolution did not succeed thus making impossible an incremental

evolution in the proper sense) have seen their performances dropping consistently,

both in terms of average and maximum fitness, as for what concerns the success

rate.

12For the purposes of this analysis, we do not take into account controller A10, for which incre-
mental evolution has not been able to generate a proper behaviour.

283

Table 6.22: Comparison between incremental (A to B) and non-incremental (B)

evolution (Ts =
Ms

3
) (average of the last 10 generations, based on 10 evolutionary

runs)

Arch. Av. fitness Max. fitness
Percentage of tests
concluded successfully

Max. success
rate [%]

1 −2.75% −0.99% −5.06% −0.35%
2 +0.33% +0.41% +0.07% 0.00%
3 +4.40% +0.40% −9.35% −0.15%
4 +8.04% +8.03% +31.74% +19.65%
5 −7.23% −5.71% −41.23% −17.50%
6 +0.24% −9.27% −97.35% −83.50%
7 −1.70% −0.27% −1.86% 0%
8 +0.10% +0.05% +0.85% 0%
9 +10.02% +3.44% +17.41% +2.20%
10 −22.01% −6.71% −38.62% −5.95%
11 +5.79% +13.48% +97.54% +88.51%
12 +7.03% +7.42% +13.15% +18.70%

Table 6.23: Comparison between incremental (A to C) and non-incremental (C)
evolution (average of the last 10 generations, based on 10 evolutionary runs)

Sim. Av. fitness Max fitness
Av. succ.
rate [%]

Max succ.
rate [%]

Approach
rate [%]

1 +2.98% +1.44% +4.73% 2.12% −7.30%
2 +33.20% +26.53% +97.76% +70.21% −52.22%
3 −2.30% −5.19% −26.39% −18.88% +15.25%
4 −25.05% −20.33% −37.84% −32.70% −13.06%
5 −26.37% −26.90% −89.12% −70.25% −17.36%
6 −6.39% +12.98% +1345% +385.23% −40.48%
7 +18.69% +9.11% +23.96% +10.26% +4.51%
8 +12.89% +4.74% +21.37% +8.47% +1.60%
9 −5.88% −4.87% −2.14% −5.31% −2.27%
10 −5.62% −8.25% −38.22% −31.75% +3.89%
11 −28.80% −28.69% −76.99% −65.18% −25.33%
12 −25.63% −18.98% −46.72% −37.00% −21.14%

284

6.6 Conclusions

The main body of this chapter has presented the results obtained by the experimen-

tal setups already described in chapter 5 (with the notable exception consisting in

no obstacles being deployed into the environment), applied to the new 3D simula-

tor developed. The goal of these experiments was to evaluate whether autonomous

neural network controllers, designed according to Evolutionary Robotics principle,

could properly drive MAVs capable of manoeuvring over three dimensions (yaw,

pitch, and roll) and dealing with tasks of various complexity. In this conclusive sec-

tion we want to interpret the results obtained in the light of the “success threshold”

introduced in chapter 4.

The first set of simulations was aimed to identify the best topologies for basic

navigation, also to be used in the following experimental setups. Several archi-

tectures exceeded the 90% success rate for the best individuals driven by those,

specifically topologies 1, 2, 3, 5, 7, 8, 9, 10, 13, 14, 19, and 20. The first thing that

comes to the eyes is that most of these architectures (7 out of 11) do not embed

any memory structure (either implemented as Jordan or Elmann network compo-

nents). Secondly, at a closer look we can see that over 70% of these architectures

(1, 2, 7, 8, 13, 14, 19, and 20) are those dealing with the simplest task possible,

which is navigation relying on a single degree of freedom (yaw). The scenario they

implement is not dissimilar to the one extensively discussed in the previous chapter,

as it is essentially 2D navigation. Therefore the good performances are not surpris-

ing by any means. Things are more interesting for the remaining architectures (3,

5, 9, and 10). Topologies 3, 9, and 10 all deal with MAVs having two degrees of

freedom (yaw and pitch) available and manage to make the aircraft able to carry

out the tasks required. As expected, the main discriminant factor consists in the

third rotation axes, i.e. roll, which makes the control task much more complex for

the controllers (as we have previously discussed, the current roll angle of a MAV

affects the outcome of every other further rotation it performs, either yaw or pitch,

thus making difficult for the controller to figure out the correct series of manoeuvres

to produce in order to reach a certain position in the space). The most interesting

285

results are those generated by architecture 5 (no hidden layer nor memory structures

included, discrete encoding of the input information), the only one to exceed the

90% success threshold for the most complex scenario possible (yaw, pitch, and roll

DoFs available). The success of this topology demonstrates how a simple neural

network controller can successfully control a MAV for navigation tasks.

The second set of experiments involves a target able to move away from the

approaching MAV. The movement repository of the target is dependent upon the

degrees of freedom available to the aircraft, thus making the chasing task much

more difficult than the one described in chapter 5 when the MAVs can perform

pitch and yaw manoeuvres as the target is able to do the same but in much more

time/space compared to its hunters. The results presented in this chapter are related

to simulations carried out using architectures 5 and 11. Topology 5 is the one

that performed best in the basic experimental setup, while topology 11, despite

falling short in terms of success rate in simulations A, has been chosen as it was

the one performing the best amongst those having a hidden layer. It was thought

that this additional “computational capability” could have turned useful when the

MAVs had to face more complex scenarios. The results do not show this effect.

Instead architecture 5 is the one that again performed the best. All in all the

results obtained were slightly worse than those gathered with the 2D simulator, but

definitely comparable. The best controllers based on topology 5 scored in the 3D

model a 90%+ success rate for targets moving at one fifth and one fourth of the

MAVs’ speed. For targets moving at one third of the speed of their chasers, the

performance stopped at 89%, still very close to our success threshold.

The third experimental setup is the one involving cooperation, with at least two

MAVs that are asked to reach the target and to activate their Boolean output units

in quick succession. Unfortunately in this scenario the results obtained have not

been favourable. Out of the 12 controller topologies tested, only one (architecture

8, yaw-only) carried out the test with a success rate sufficient to exceed the 90%

success threshold we decided to use. Things have improved quite clearly adopting

incremental evolution (architectures 1, 2, 7, and 8, i.e. all of those relying on a single

286

DoF, performed with success rates higher than 90%), but not enough to qualitatively

modify the meaning of the results obtained in this scenario.

6.6.1 Multi-threading

One of the simulations described in this chapter, namely A9, has been used as bench-

mark for further technical analysis on the multi-threading topic. This simulation

was run ten times for 50 generations on different machines, measuring the amount

of time required to complete the evolutionary process whether multi-threading was

enabled or not. As expected the results highlighted a massive improvement in com-

puting performances when multi-threading was used. On the same machine, the

comparison between the 3D simulator engine running as a single-thread application

and with the threads of execution spread across the four cores available showed that

in the latter scenario the time required for the computation decreased by 66.59%.

Moving to a machine with eight processors available the boost in performance was

even more evident, due to reduction in time measured as 80.66%.

What we have obtained is the practical demonstration that our simulator, but

also most ER robotics in general as they tend to share the most important charac-

teristics of the models described in this thesis, can benefit hugely from the adoption

of multi-threading programming techniques. Also when these techniques are imple-

mented in the most high-level way as possible.

6.6.2 Incremental evolution

Finally, an additional set of experiments with a prominent theoretical footprint has

been carried out on the topic of incremental evolution. As it has been extensively

discussed in Ruini et al. [324], it is difficult to draw, from a single experiment,

definitive conclusions about the validity of a complex and widely applicable approach

such as incremental evolution. Not only the particular task analysed, but also several

additional variables seem to have had an impact on the profitable application of an

incremental approach, as demonstrated by the study presented herein. The challenge

consists in clearly identifying these variables and providing a theoretical framework

287

- a set of guidelines - that researchers willing to experiment in incremental evolution

could rely on in the future in order to fully benefit from this approach.

Based on the results described in the latest sections of this chapter, we have

identified at least two findings that warrant further study. First, it seems to be

necessary to let the evolutionary algorithm free to explore a large space of solutions.

Incremental evolution performed from Scenario A to B has been particularly benefi-

cial for the more complex architectures (i.e. those characterised by a larger amount

of connection weights), while generating limited results for the others. Second, the

incremental process has to go through a series of closely linked steps. This has been

demonstrated by the fact that direct evolution, in the testbed scenario discussed

herein, has clearly outperformed the incremental approach for Scenario C. Further

analyses are required to investigate in more detail these two aspects.

Chapter 7

Flocking Behaviour: Towards

Experiments on Physical Robots

This chapter describes the last set of experiments carried out as part of the PhD

research. What is presented herein is an alternative approach to collective behaviour

and distributed control based upon flocking principles. Rather than concentrating

exclusively on computer simulations, as done for the work presented in chapters 5

and 6, the emphasis shifts towards experimenting with real robotic platforms. The

testbed platform used as reference is the swinglet, a lightweight mono/fixed-wing

robotic aircraft produced by the Swiss company senseFlyTM.

In this chapter we will first illustrate the most relevant technical details about

the aerial platform used. Then we will provide an overview of the computer model

utilised for designing and testing autonomous controllers for the swinglet. The al-

gorithms developed on the software simulator implement both individual/collective

navigation (using approximated areas of attraction or more accurate GPS-like way-

points), and flocking (speed adjustment, heading alignment, Reynolds’ boids-like)

functionalities. The results of preliminary experiments carried out on real robots

are presented.

The work described in this chapter has been made possible thanks to a collabo-

ration with the Laboratory of Intelligent Systems (LIS) at the École Polytechnique

Fédérale de Lausanne (EPFL), Switzerland. The author would like to thank all

those involved in this joint effort. At the same time it is important to make clear

289

the boundaries between what has been done by the author and what by third par-

ties. The author has personally designed the software simulator described in para-

graph 7.2 and sub-paragraphs, identified the metrics presented in paragraph 7.3.1,

and carried out the experiments detailed in paragraph 7.3.2. The flocking algorithm

introduced in the first section of paragraph 7.3.3 has been designed and tested on

simulation by the author, while the remaining work has been carried out by collabo-

rators at the EPFL (a detailed list of the people who actually did the job is reported

in the second section of paragraph 7.3.3). The robotics platform used (described in

paragraph 7.1) has been entirely designed by researchers working at the EPFL and

at senseFly1TM.

7.1 Robotics platform used: senseFly’s swinglet

The experiments presented in this chapter have been carried out using a customised

version of the swinglet2 (see Figure 7.1), a 420g light 80cm wing-span mono/fixed-

wing MAV produced by senseFly. The swinglet is often used for aerial photogra-

phy/surveillance and scientific investigations on outdoor flying robots [211]. Its main

structure is made of expanded polypropylene, on which a single electric propeller -

fuelled by a polymer lithium battery guaranteeing up to 60 minutes of autonomy

(enough to approximately cover a 40km distance) - is mounted. According to the

specifications provided by the manufacturer, the swinglet flies at a speed of between

10 and 15m/sec inclusive, it has a maximum turn rate of 45◦/sec guaranteed by the

use of two elevons3 (one on each side of the aircraft) and can proficiently cope with

wind currents as strong as 25km/h. Additional details on the swinglet can be found

in appendix A.8.

The configuration we have had access to comprises of a GPS receiver (a u-

bloxTMLEA-5H GPS module4), a rate gyroscope (Analog DevicesTMADXRS6105)

used to measure the absolute yaw rate of the MAV, and two pressure sensors (im-

1senseFlyTM(http://www.sensefly.com) is an EPFL spin-off company.
2http://www.sensefly.com/products/swinglet/
3Elevons are combined ailerons/elevators.
4http://www.u-blox.com/en/lea-5h.html
5http://www.analog.com/static/imported-files/data_sheets/ADXRS610.pdf

290

Figure 7.1: senseFly’s swinglet MAV

plemented as pitot tubes and belonging to the FreescaleTM MPX series6). In order

to exchange data with a ground-based station the swinglet is also equipped with a

DigiTMXBee-PRO PKG-U7, which is a radio transmitter providing a 1.6km commu-

nication range. Standard R/C equipment is used for actuators, the motor controller

and the battery.

A complete autopilot system has been built by Leven et al. [212] and installed on

the aircraft through a dsPic33 micro-controller8 (see Figure 7.2(a)). The approach

followed by the designers of this system is different than those usually undertaken for

implementing autopilots. Leven’s technique can be considered “minimalist” since

it only relies on two pressure sensors and a single axis rate gyro, rather than on

a complete IMU (Inertial Measurement Unit9) or an AHRS (Attitude and Head-

ing Reference Systems10) as is the common habit among the experts of the field11

(e.g. [189] and [191]).

The autopilot has direct reading access to all the sensors mounted on the air-

craft and it can control both the propeller thrust and the servomotors that in turn

6http://www.freescale.com/webapp/sps/site/taxonomy.jsp?nodeId=
01126990368716

7http://ftp1.digi.com/support/documentation/90000831_A.pdf
8http://www.microchip.com/ParamChartSearch/chart.aspx?mid=14&lang=

en&branchID=8183
9An IMU is an electronic device that measures and reports on a craft’s velocity, orientation,

and gravitational forces, using a combination of accelerometers and gyroscopes (from: http://
en.wikipedia.org/wiki/Inertial_measurement_unit).

10An AHRS consists of sensors on three axes that provide heading, attitude and yaw information
for aircraft. They are designed to replace traditional mechanical gyroscopic flight instruments and
provide superior reliability and accuracy (from: http://en.wikipedia.org/wiki/Attitude_
and_Heading_Reference_Systems).

11The computer code constituting the controller can be downloaded from: http://gna.org/
projects/aeropic/

291

lower/raise the elevons. In addition to flight stabilisation the system can therefore

perform control of airspeed, altitude and heading turn rate. Some basic autonomous

navigation functions, such as waypoint-based navigation, are already implemented

within the system. Furthermore the autopilot provides an automatic landing func-

tion based on GPS, which - either on request or in case of a software/hardware

failure - forces the MAV to fly towards a pre-specified landing spot, then makes it

glide around it progressively reducing its altitude and the thrust of the propeller

until the aircraft reaches the ground.

A flexible payload bay situated on the top surface of the aircraft - next to the

battery compartment - allows the swinglet to transport up to 150g of additional

equipment. In the available configuration the payload consists of both the above

mentioned autopilot system, and a ToradexTMColibri PXA270 CPU board12 running

a minimal Linux distribution. The board has an “off-the-shelf” USB Wi-Fi dongle

(a dual band Wireless-N NetgearTMWNDA310013) connected to it, which can be

used for communication between the MAVs. The dongle has a 500m line-of-sight

communication range, although its firmware has been modified in order to allow

the experimenter to restrict this range as desired [158]. The onboard computer

is directly connected to the autopilot (see Figure 7.2(b)), to which it can issue

commands (namely desired turn rate, speed and altitude) via a software controller

running on the CPU board.

(a) (b)

Figure 7.2: (a) the dsPic33 micro-controller upon which the autopilot has been built;
(b) overall view of all the equipment hosted inside the payload bay. Sources: [212,
213]

12http://www.toradex.com/Products/Colibri/Modules/Colibri_PXA270_312MHz
13http://www.netgear.co.uk/wnda3100.php

292

With the use of the XBee radio link, the MAV behaviour can be monitored by a

standard computer located on the ground running a dedicated software called e-mo-

tion (see a screenshot in Figure 7.3) developed by Beyeler et al. [38]. The computer

simply needs to be connected to a proper XBeeTMdevice14 capable of exchanging

data with the radio unit installed on the aircraft in order to be used as ground

station. e-mo-tion allows the user to switch the control of the aircraft between

the auto-pilot15, the software controller running on the Linux board and a standard

radio transmitter (in case of necessity the swinglet can be remotely controlled, which

can be an extremely useful property to rely on during testing). Another interesting

feature offered by the software running on the ground station is the possibility

of logging all the flight data, thus relieving the controller operating on the Linux

board from this task. In this way the code running on the onboard computer will

be lighter (also potentially less bug-prone) and the user will not incur in the risk of

filling the flash memory on the embedded computer, thus reducing the possibility

of unexpected crashes.

Figure 7.3: Screenshot of the e-mo-tion main interface during a flight test involving
several MAVs

The swinglet can be seen in action by downloading the movies published on the

EPFL’s Laboratory of Intelligent Systems website16.

14Each XBeeTMunit used on the ground-based station can connect up to a maximum of 3 MAVs.
15Through e-mo-tion it is also possible to interact with the autopilot, for example deploying

specific waypoints that the MAV will have to follow, or forcing a landing procedure.
16http://lis.epfl.ch/smavs/

293

7.2 Software simulator

The software simulator used for the preliminary testing of the controllers described

in the current section (see Figure 7.4) is a modified version of the one discussed in

Ruini et al. [323, 324]. As before, the simulator implements an incremental geometric

flight model in discrete time steps [311]. The parameters of the model have been

tuned in order to replicate, in the most accurate way possible, the constraints of the

senseFlyTMswinglet platform, specifically in terms of speed range and turn rate per

second.

The autonomous controllers managing the aircraft operate on two variables: air-

speed (which can be increased or decreased) and turn rate (which can be modified

instructing the MAV to perform a yaw turn, i.e. a rotation around its vertical body

axe). The reason for reducing the controller to operate on these two dimensions re-

lates to the autopilot system described within the previous section. As noted before,

the autopilot provides both flight stabilisation and altitude control (other than being

able to modify speed and turn rate), meaning that the autonomous controller can

assume the MAV is always parallel to the ground and flying at the desired altitude,

thus ignoring aspects such as current pitch and roll angles. In this way the MAVs

can be considered to some extent a type of “2D flying robot”, since their behaviour

will only depend on rotations around one single axis, as is generally the case for

ground-based vehicles.

The virtual reference environment implemented in this version of the simulator

consists of a three-dimensional parallelepiped measuring 800x300x800GU (where

the height is represented as the X axis; see Figure 7.5, which also highlights the

coordinate systems used by Irrlicht and therefore in the rest of this chapter17).

The MAVs - having a size of 4.35x1.797x4.82GU - can fly across the environment

at a speed included between 10 and 15GU/timestep. At any time step the MAVs

first perform a turn rate (if so decided by the controller, in which case the rotation

17Within this context we use the term GU, “Graphical Unit”, referring to the basic measure
unit employed by Irrlicht graphics engine. We have endeavoured to obtain the following two
relationships: 1GU≈1m, 1 time step≈0.1sec. In an adjustment to the parameters of the previous
simulators, in this version the environment boundaries can be stepped over with no consequences
for the MAVs.

294

Figure 7.4: Screenshot of the flocking software simulator

−400

−200

0

200

400

−400

−200

0

200

400

0

50

100

150

200

250

300

Y

Reference environment

Z
X

Figure 7.5: The simulation reference environment

must be included within a [−4.5◦; 4.5◦] range) then they are all moved in sequence.

Each aircraft moves along its current heading (after the yaw preliminary rotation)

redeploying itself at a distance calculated according to Equation 7.1 (where i is used

as a general index for indicating a non-specific MAV).

distance =
MAVi.speed+X ∼ (0, 0.25)

10
GU (7.1)

The new coordinates are calculated as in Equation 7.2 (please consider that the

addition and the multiplication operations have to be interpreted as vector addition

and scalar multiplication respectively).

295

~MAV t+1
i = ~MAV t

i + distance ∗ ~transformationV ector (7.2)

transformationVector is a three-dimensional vector, for which the X, Y, and Z

elements are defined as specified in Equation 6.318:

X = cos(MAVi.x̂) ∗ sin(MAVi.ŷ) ∗ cos(MAVi.ẑ) + sin(MAVi.x̂) ∗ sin(MAVi.ẑ)

Y = cos(MAVi.x̂) ∗ sin(MAVi.ŷ) ∗ sin(MAVi.ẑ)− sin(MAVi.x̂) ∗ cos(MAVi.ẑ)

(7.3)

Z = cos(MAVi.x̂) ∗ cos(MAVi.ŷ)

A certain amount of noise - distributed according to a Gaussian distribution with

mean 0 and standard deviation 0.25 (which in Equation 7.1, as well as in the next

paragraphs, is defined as X ∼ (0, 0.25)) - is added to both any yaw manoeuvre and

forward movement performed by the MAVs simulated through this computer model.

The reason for introducing noise consists in adding some degrees of uncertainty to

the simulated flight dynamics, thus increasing the realism of the model and the

robustness of the controllers tested in it [192].

The simulator allows the user to set several parameters before running an exper-

iment19:

• number of MAVs : from a minimum of 1 up to a maximum of 12;

• initial MAVs team formation: horizontally aligned (2D), queued (2D), V-

formation (2D), intervallic launch (2D), random (2D), horizontally aligned

(3D), queued (3D), V-formation (3D), intervallic launch (3D), random (3D);

• navigation task : none, fly around the centre of the environment (leader only),

fly around the centre of the environment (entire team), waypoint navigation

(leader only), waypoint navigation (entire team), follow the leader (who flies

18These operations are performed within the software by the dedicated Irrlicht functions setRo-
tationDegrees(), setRotationRadians(), and transformVect().

19Some of these parameters, such as the navigation task and the flocking algorithm used, can
also be modified in real time while a simulation is running.

296

around the centre of the environment), follow the leader (who flies between

two waypoints);

• flocking algorithm: none, speed adjustment, heading alignment (to the leader’s

heading), heading alignment (to the average neighbours’ heading), heading

alignment (to the leader’s heading) + speed adjustment, heading alignment

(to the average neighbours’ heading) + speed adjustment, Reynolds’ boids.

7.2.1 Initial formation

The initial formation parameter allows us to select the way in which the MAVs will

start each test. The two main categories the user can choose from are 2D and 3D.

The former means that the aircraft will all be flying at the same altitude, while the

latter deploys the MAVs at different altitudes.

(a) (b)

(c) (d)

Figure 7.6: Different initial MAV teams formations: (a) 4 MAVs horizontally
aligned; (b) 4 MAVs queued; (c) 6 MAVs reproducing a V-formation; (d) 10 MAVs
randomly distributed

When horizontal alignment or queueing are selected (respectively shown in Fig-

ure 7.6(a) and 7.6(b)), the MAVs are respectively deployed side by side or forming

297

a queue, standing in both cases at 10GU (d) distance far from each other20. V-

formation and random deployment are implemented according to Algorithms 3 and

4, where: h indicates the desired altitude; N stands for the number of MAVs within

the team; areMAVsTooClose() is a function that checks whether in the group there

are two or more MAVs too close to each other, i.e. within a distance < d between

them; randFloat() is a function returning an uniformly distributed random float

value included between the lower and upper boundaries specified in input21.

Algorithm 3 Flocking simulator: V-formation MAVs deployment (3D)

d = 10;
MAV1.x = 0;MAV1.y = h;MAV1.z = 0;
for i=2:N do
MAVi.y = h+ randF loat(−5.0, 5.0);
x = d ∗ i; z = d ∗ i;
if i%2 = 0 then
MAVi.x = MAV1.x− x;
MAVi.z = MAV1.z − z;

else
MAVi.x = MAV1.x+ x;
MAVi.z = MAV1.z + z;

end if
end for

Algorithm 4 Flocking simulator: random MAVs deployment (3D)

d = 10; d2 = N ÷ 2.5;
while areMAVsTooClose() do

for i=1:N do
MAVi.x = randF loat(−d ∗ d2, d ∗ d2);
MAVi.y = h+ randF loat(−5.0, 5.0);
MAVi.z = randF loat(−d ∗ d2, d ∗ d2);

end for
end while

The two methods defined as “intervallic” launches indicate that the MAVs are

sequentially deployed into the reference environment according to their ID22. In the

2D scenario the aircraft just appear at the centre of the environment with a certain

time delay between each of them. Instead - in the 3D scenario - the MAVs take off

20In case of a 3D initial formation the distances are calculated considering the MAVs are all at
the same altitude.

21Algorithms 3 and 4 refer to the 3D scenarios. The altitude (y axis) is simply set equal to h in
case a 2D deployment method is selected.

22When the MAV objects are generated by the software, each of them receives an ID number
starting from 1 and increasing sequentially. The upper boundary of the IDs range is N, which
corresponds to the number of MAVs used.

298

in series from the ground, then follow a fixed path which brings them to the desired

altitude through progressive modifications of their pitch rate (see Figure 7.7). In

both cases, the interval between each “launch” amounts to 500 time steps.

−400 −300 −200 −100 0 100 200 300 400
−400

−200

0

200

400

0

50

100

150

200

250

300

350

400

Z

Takeoff and navigation between two waypoints

X

Y

Flight path

Figure 7.7: [
Flight path followed by a single MAV taking off from the ground]Flight path

followed by a single MAV taking off from the ground and then navigating between
two waypoints

7.2.2 Navigation algorithms

Concerning navigation, the MAVs - as mentioned before - can be driven by three

different categories of algorithms: a) fly being attracted to the centre of the environ-

ment, b) navigate back and forth between different (fixed) waypoints, or c) follow a

”leader” teammate.

To implement the attraction towards the centre of the environment the simple

formula expressed in Equation 7.4 - which returns a steering request - has been

used. The numerator of this formula computes the distance from the centre of

the environment for the i -th MAV (in two-dimensions only, which is the reason for

omitting the MAVi.y
2 term). The denominator simply provides to calculate the

diagonal length for the base of the reference environment, then divides the obtained

value by 2. Gaussian noise is added to the resulting steering request.

299

steeringRequest =

√
MAVi.x2 +MAVi.z2

(
√

8002 + 8002)/2
+X ∼ (0, 0.25) (7.4)

Figure 7.8 shows, in two-dimensions, the flight paths that 4 aircraft have followed

during a simulation they started deployed according to a random 2D formation.

The MAVs have flown for about 10,000 time steps while being attracted towards

the centre of the environment.

−400 −300 −200 −100 0 100 200 300 400
−400

−300

−200

−100

0

100

200

300

400
Flight paths followed by the entire flock during the experiment

X

Z

Flight path for MAV #01

Flight path for MAV #02

Flight path for MAV #03

Flight path for MAV #04

Figure 7.8: Flight paths followed by a team of four MAVs attracted to the centre
of the reference environment. Their trajectories describe a series of circles - moving
counterclockwise - passing through the central point

Waypoint navigation simply consists in the MAV flying between two fixed points

in the space. The two waypoints used are respectively located at coordinates

(−165.0, h, 165.0) and (165.0, h,−165.0), thus 300GU far from each other (see Equa-

tion D.1 for a reference on how the distance has been calculated). h, within this

context, represents the altitude of the all MAVs or the altitude of the MAV with

the lowest ID for 2D and 3D starting formations respectively. The steering request

generated by the controller at any time step is calculated according to Equation 7.5.

300

In this equation the ∆α symbol indicates the angle between the current waypoint

and the heading of the MAV (assuming the aircraft being parallel to the ground, i.e.

with a roll/bank angle equal to 0◦); its value falls within the [−180.0◦, 180.0◦] range

([−180.0◦, 0.0◦] when on the relative “left” of the MAV, [0.0◦, 180.0◦] when on its

relative “right”). Again, normally distributed noise is added to the value generated

by the equation to allow for some uncertainty in the outcome of the executed ma-

noeuvre. A waypoint is considered reached when one of the MAVs gets closer than

30GU to it. The two waypoints, as well as the trajectory followed during a test by

a MAV navigating between them (inclusive of the take off phase), can be seen in

Figure 7.7.

steeringRequest =
∆α

40
+X ∼ (0, 0.25) (7.5)

The simulator allows all of the MAVs to fly between waypoints/around the centre

of the environment, or just one of them (the “leader”) conforming with such a

navigation task. If the latter feature has been activated, the non-leader MAVs

will have (depending on the choice made by the user) two options available: not

doing anything (i.e. flying in a straight line), or fly following the leader. When an

algorithm (whether a navigation or, as we will see in the next section, a flocking

one) involving a leader is selected, the one designated to assume that role is the

MAV with the lowest ID.

Leader-following behaviour and waypoint navigation have been implemented in

a very similar way. When one of the two navigation algorithms belonging to the

leader-following category is selected, the leader either navigates attracted to the

centre of the environment or flies back and forth between the two fixed waypoints.

The followers are driven by steering requests generated through Equation 7.5, with

the only difference consisting in the calculation of the ∆α parameter which now

represents the angle between the follower’s heading and the position of the leader,

rather than the angular difference between the heading direction of the follower and

the current waypoint.

Two more things to consider in relation to this are:

301

• for 3D intervallic launches the navigation algorithm only activates once the

MAV has reached the desired altitude;

• a common factor across all the navigation algorithms is the fact that the MAVs

start every simulation flying at a speed equal to 12GU/timestep.

7.2.3 Flocking algorithms

The software simulator will not permit the assignation of any navigation task to the

aircraft. In this case all the MAVs will simply follow a straight heading, unless a

flocking algorithm, which from time to time forces them to steer, has been selected.

Flocking algorithms are so labelled because they aim to make the MAV team behave

like a flock. Various alternative strategies have been tested to obtain this outcome

and a description of how they work is provided within the current section.

From a technical point of view, the flocking algorithms that generate steering

requests23 make the MAV perform, at any time step, a yaw rotation which is the sum

(intended as sum of circular quantities) of two independent steering requests: one

coming from the navigation algorithm (if enabled), the other one from the flocking

rule.

The first option available to the MAVs is speed adjustment. According to this

algorithm, which only works when waypoint navigation is used24, the designated

leader continuously broadcasts information about its coordinates and those of the

waypoint it is currently aiming at. The other MAVs receive this information in real

time25 and interpret it according to Algorithm 5, where: distance() is a function

which returns the distance between the two points specified as input parameters,

flockingDistance is the desired distance at which the followers should keep from the

leader, 0 is the ID of the flock leader, and waypointj is the waypoint towards which

the leader and/or all the MAVs is/are currently flying. As the algorithm shows, a

23Only one of them, namely Speed adjustment, does not generate any steering request at all.
24This algorithm could potentially also work with “attraction to the centre” as navigation task,

but this functionality has not been implemented in the simulator.
25It should be noted that within the simulator all the MAVs have instantaneous access to all

the information they need. As we will see in next sections, this is not true for real robots since
all the required information must be exchanged between the robots, thus leading to some delay in
communication and to the necessity of staying within a limited distance range.

302

2GU tolerance has been added to the calculus of the desired flocking distance.

Algorithm 5 Flocking simulator: speed adjustment for the i -th non-leader MAV

flockingDistance = 10;
if distance(MAVi, waypoint) > distance(MAV0, waypoint) then

if distance(MAVi,MAV0) > (flockingDistance+ 2) then
MAVi.speed+ +;

else if distance(MAVi,MAV0) < (flockingDistance− 2) then
MAVi.speed−−;

end if
else
MAVi.speed−−;

end if

This simple code allows the MAVs to infer their relative position compared to

the leader (i.e., whether they are in front of or behind it, “understood” exploiting

the knowledge about the current waypoint coordinates) and then adjust their speed

accordingly (increasing it if behind the leader and farther than the desired flocking

distance, decreasing it if in front of the leader or too close to it). The intensity of the

speed adjustment corresponds to a random float value drawn from a flat distribution

ranging between 0 and 0.5.

An additional flocking algorithm implemented in the simulator is heading align-

ment. As the name suggests, this algorithm is used to modify the heading of each

MAV in order to match it with a reference point. The references can be either the

leader’s heading (as usual the “leader” is the MAV that has been assigned the lowest

ID, independently from the navigation algorithm in use26) or the average heading

for all the MAVs within the neighbourhood.

Once the ∆α between the current heading and the desired one has been calcu-

lated, the amount of steering to perform is calculated according to Equation 7.5.

In algorithmic terms the entire procedure can be represented by the pseudocode

in Algorithm 6, where: calculateDeltaHeadingFromTo() is a function which returns

the angle between the heading of the object received in input (first parameter), and

a different object for whom the coordinates are received by the function as a sec-

ond parameter; calculateAverageNeighboursHeading() is a function calculating the

average neighbours’ heading for the MAV specified in input.

26In the case of this flocking algorithm being selected it will not have any impact on the leader,

303

Algorithm 6 Flocking simulator: heading alignment for the i -th MAV
∆α = 0;
if flockingAlgorithm = alignToTheLeader then

if i 6= 0 then
∆α = calculateDeltaHeadingFromTo(MAVi,MAV0);

end if
else if flockingAlgorithm = alignToTheNeighboursHeading then
avgHeading = calculateAverageNeighboursHeading(MAVi);
∆α = calculateDeltaHeadingFromTo(MAVi, avgHeading);

end if
performY aw(MAVi,∆α÷ 40 +X ∼ (0, 0.25));

The simulator also allows the use of mixed flocking algorithms in which speed

matching and heading alignment (i.e. Algorithm 5 and 6) are used together. Fur-

thermore the user can decide to employ the Reynolds’ flocking algorithm for boids.

What this algorithm is and how it works will be explained in detail in the next two

sections.

Please consider that all of the flocking algorithms also generate an output steering

manoeuvre which is affected by Gaussian distributed noise.

Reynolds’ flocking algorithm for boids

With the term “Reynolds’ flocking algorithm” we refer to the core of the soft-

ware Craig Reynolds originally designed to implement automatic flocking behaviour

among computer animated agents (or “boids”, i.e. bird-like objects, according to

his definition). His work - originally used in order to help the workers in computer

graphics involved in designing the motion of large groups of entities - eventually

led in 1987 to a seminal publication introduced at the annual edition of the SIG-

GRAPH27 conference [311]. The work presented by Reynolds received a great deal of

attention quickly becoming extremely popular within the computer science field28.

The remarkable facet of Reynolds’ work consists of the assumption upon which

since it is not supposed to perform any steering manoeuvre in order to match its own heading.
27SIGGRAPH (International Conference and Exhibition on Computer Graphics and Interactive

Techniques, http://www.siggraph.org) is a traditional conference dedicated to the computer
graphics community that in 2011 will be held for the 38th time.

28Scientists from apparently unrelated fields, as complexity science, also looked with interest at
Reynolds’ model, seeing in it an excellent demonstration of a complex collective behaviour emerging
from the low-level interactions of a multitude of agents, each of them being aware of (as well as
influencing) a narrow neighbourhood only. This is a classical example of what Murray has defined
as the molecular view of complexity [273].

304

his model is based. Rather than elaborating complex rules to govern the behaviour

of a flock considered as a whole, he proposed an approach based on every single

individual obeying to a limited set of simple rules. As well as simple these rules are

also local, in the sense that every boid is only aware of its local neighbourhood (i.e.

the behaviour exhibited by the boids closer to it than a certain threshold) and does

not have access to global information about the entire flock at all. This mechanism

has been proven to work. Large groups of boids driven by Reynolds’ algorithm are

capable of showing a coherent flocking behaviour, as well as higher level properties

such as collective obstacle avoidance29. Further improvements that have been made

over the years on top of the original algorithm allow for a flock to be directed (even

if that would mean losing one of the characteristic traits of the model, which is the

absence of global information30) to replicate leader-following dynamics [150, 312],

etc.. Modified versions of the algorithm have also been applied countless time to

reproduce things such as the motion of animals as in schooling [199] or herding [165].

It is worth noting that, at the time he wrote his software, Reynolds was not

interested in replicating real animal behaviour in computer animations, so he never

claimed that his model faithfully recreates conducts that can be observed in nature.

Furthermore, another assumption he implicitly made about all the members of a

flock being peers (i.e., no hierarchical structures existing within the group) is not

necessarily true (and it has recently been challenged by Biro and colleagues [274,

41, 125] in their studies focusing on homing pigeons).

The set of rules governing the flocking behaviour can be summarised (in order

of decreasing importance) as:

1. collision avoidance: avoid collisions with nearby flockmates;

2. velocity matching : attempt to match velocity with nearby flockmates;

29An example of Reynolds-based flocking behaviour can be found in two videos made by
the author: one demonstrating the basic behaviour (http://www.youtube.com/watch?v=
2aXMo3MFNsA) and one in which the boids are attracted by a point moving across the space
and at the same time need to avoid a fixed obstacle (http://www.youtube.com/watch?v=
GUkjC-69vaw).

30Although it might be argued that not all of the boids need to be aware of this information. The
modified algorithm would preserve Reynolds’ assumption if only the boids in front of the group
would be able to perceive the point of attraction and steer towards it, thus back-propagating a
steering manoeuvre to the entire flock

305

3. flock centering : attempt to stay close to nearby flockmates.

To fully understand how these three rules work, it is fundamental to remember

that Reynolds defined “velocity” as ”a vector quantity, referring to the combination

of heading and speed.” Rule number 2, velocity matching, therefore refers to both

speed adjustment (match the speed of the boids inside the neighbourhood) and

heading alignment. To clear up potential misunderstandings, in a later paper [312]

Reynolds renamed the velocity matching rule as alignment. Collision avoidance and

flock centering are instead two complementary rules that respectively provide to

keep the boids at a “safe distance” between each other, but not too far away (that

is: close enough to be considered a homogeneous group to the eyes of an external

observer).

(a) (b)

(c)

Figure 7.9: The three flocking rules elaborated by Reynolds: (a) separation; (b)
alignment/velocity matching; (c) cohesion. Source: http://www.red3d.com/cwr/

boids/

Every rule generates an independent request for a steering manoeuvre to be ex-

ecuted by the boid under examination. The entire model relies on vector geometry,

implying that the steering requests generated by the different rules are expressed

in terms of independent geometric vectors. But, considering that a boid can only

perform one steering manoeuvre at a time, an issue is raised regarding how the boid

is supposed to behave when facing rules that attempt to steer it towards opposite

306

directions. To solve this potential source of troubles, Reynolds first assigned dif-

ferent weights to the three rules, thus attributing a different relative importance to

each of them. Not only that the vectors generated by the different rules are attenu-

ated by a certain factor31, but a “governing element”, named accumulator, was also

introduced. The working principle of the accumulator is fairly easy to understand.

As Reynolds explained [311]:

“The acceleration [steering] requests are considered in priority order
and added into an accumulator. The magnitude of each request is mea-
sured and added into another accumulator. This process continues until
the sum of the accumulated magnitudes gets larger than the maximum
acceleration [steering] value, which is a parameter of each boid. The
last acceleration request is trimmed back to compensate for the excess of
accumulated magnitude.”

Despite the entire procedure appearing to be quite straightforward, Reynolds’

original paper is lacking in terms of technical details. Making it difficult to replicate

its work in a faithful way.

Customised (à la Parker) implementation of Reynolds’ algorithm

As previously mentioned there is some degree of uncertainty about how Reynolds

originally implemented his model. His original paper, although well written and

capable of stimulating endless discussions, is quite minimalist in terms of technical

details. It provides an overview of the general principles followed in order to achieve

the flocking behaviour, but does not go particularly far in describing how exactly

the entire procedure should be implemented in terms of computer code. For this

reason, over the years many researchers have proposed their own implementations

of Reynolds’ algorithm. The approach we have decide to take inspiration from is

the one recently suggested by Conrad Parker32.

Parker’s pseudocode for the separation and cohesion rules is shown in Algo-

rithms 7 and 8 respectively. Consider that bi and bj represent respectively the i -th

and the j -th boids belonging to the flock; while N can be interpreted either as the

31The weights associated to the rules are fractional values included between 0 and 1.
32The pseudo-code written by Parker, as well as a detailed explanation about the various as-

sumptions he made in writing it, can be found online at the URL: http://www.kfish.org/
boids/pseudocode.html.

307

total amount of boids in the flock or just as the subset of those within i ’s neigh-

bourhood.

Algorithm 7 Parker’s pseudocode for flocking: cohesion rule for boid i
vector c;
for j = 1 : N do

if i 6= j then
c = c+ bj.position;

end if
end for
c = c/(N − 1);
return (c− bj.position)/100;

Algorithm 8 Parker’s pseudocode for flocking: separation rule for boid i
vector s = 0;
for j = 1 : N do

if i 6= j then
if |bi.position− bj.position| < 100 then
c = c− (bi.position− bj.position);

end if
end if

end for
return s;

We have decided to forgo using one of Reynolds’ three original rules (namely

speed matching), thus just relying on two of them. The reason for this is because

using a point of attraction (waypoints, in our case) valid for all the MAVs, would

make redundant (and possibly counterproductive) to use the alignment/velocity-

matching rule. Notwithstanding how many rules are employed, Algorithm 9 shows

how any number of these can be assembled together in order to generate a single

steering manoeuvre and the consequent movement of boid b to the desired location.

In this algorithm w1, w2, w3, ... represent the weight factors applied to the vectors

v1, v2, v3, ... generated by rules 1, 2, 3, ... respectively. As can be seen Parker has

not implemented any sort of accumulator, but has simply relied upon a weighted

sum of all the vectors created by the individual flocking rules.

Because of the autopilot system described in Section 7.1 we only consider two

dimensions (X and Y) while extrapolating the vectors from the flocking rules, as-

suming that the value of the altitude of the MAVs flight is constant.

Assembling the rules together has been done through the pseudocode shown in

308

Algorithm 9 Parker’s pseudocode for flocking: assembling the rules together

vector v1, v2, v3, ...; total = 0;
int w1, w2, w3, ...;
for i = 1 : N do
v1 = w1 · rule1(bi);
v2 = w2 · rule2(bi);
v3 = w3 · rule3(bi);
...
total = total + v1 + v2 + v3 + ...;
bi.position = bi.position+ bi.velocity;

end for

Algorithm 10, for which the parameters were fixed at the end of a trial-and-error

procedure. calculateCohesionVector(id) and calculateSeparationVector(id) are two

functions returning the vectors for the id -th MAV generated by the cohesion and the

separation rules respectively (Algorithms 7 and 8). These two vectors are summed

to the one representing the current position of MAVid in order to obtain a vector

which identifies the desired position towards which the MAV should aim. Since the

modelled aircraft is a fixed wing one (and cannot therefore move to the destination

point ignoring its current orientation), out of this data we must extrapolate the

delta angle (∆α) between the current heading and the desired vector. ∆α is first

divided by 40 - as for Equation 7.5 - then Gaussian distributed noise is added. On

top of that, the resulting value (which is the amount of yaw steering the MAV has

to perform) is further divided by three because of the observations extrapolated by

our experiments. This seems to suggest how the flocking behaviour becomes more

efficient when the steering value is attenuated.

Algorithm 10 Parker’s-inspired pseudocode for flocking: assembling the rules to-
gether for boid i

~v1 = 1
1
∗ calculateCohesionV ector(MAVi);

~v2 = 1
50
∗ calculateSeparationV ector(MAVi);
~resultingV ector = ~MAVi + ~v1 + ~v2

∆α = calculateDeltaHeadingToResultingV ector(MAVi);
performY aw(MAVi, (∆α÷ 40 +X ∼ (0, 0.25))÷ 3);

309

7.3 Moving from simulations to reality: overcom-

ing the reality gap

Moving from computer simulations to real robots is always a challenging task. We

have already discussed the so-called “reality gap” in section 4.3.6. In this case, the

job is made significantly easier by the robotics platform we are relying on. When

we refer to the platform as in this case, we do not generally intend to point our

attention to its “physical” component, but rather to its software. We are looking

in particular at the embedded autopilot system, which provides a very good level of

flight stabilisation in addition to the possibility of receiving/executing flight instruc-

tions generated in real time by another piece of software running on the onboard

PC104 computer. With such a system available, we can focus on the more practical

aspects of our experiments, relying on the fact that the platform will react most of

the time in the expected way to the commands issued.

Despite this, many other issues remain. Working with physical robots interacting

in a real world environment means that the readings coming from the MAVs’ sensors

will often be inaccurate (when not completely absent) and that the communication

exchanges between vehicles will sometimes fail, etc.. All of these issues have been

taken into account when writing the code for the autonomous controllers.

Specifically looking at our experimental setup, we have found an additional prob-

lem as soon as we have moved towards real-world experiments. When it comes to

implementing the flocking behaviours on real flying robots one of the first issues that

arises concerns making sure that all the vehicles involved in the flocking might be

close enough to each other in order to exchange information and move according to

the algorithm designed. Although many alternative ways to approach this issue are

available, the problem is not straightforward. The MAVs take off from the ground

at different times and the autopilot system embedded on their fuselage makes them

follow different flight paths to reach the desired altitude, thus they end up being

scattered into the environment and are potentially very far (a few hundred meters)

from each other.

310

The simple approach we have decided to implement consists in designating a

leader MAV which takes off and once it has reached the desired altitude and it

starts navigating back and forth between two fixed waypoints. The other MAVs,

that start their tests some time after the leader, combine the aforementioned “follow

the leader” navigation algorithm with the “speed adjustment” flocking algorithm.

In this way, the followers get progressively closer to the leader until all of them are

next to its tail. When this stage is reached (which can be determined either using a

threshold function or relying on the experimenter’s intuition), the Boid-like flocking

algorithm can be activated.

7.3.1 Test field and coordinate systems

The tests involving physical robots were carried out over a rural area within the

village of Bioley-Orjulaz (VD, Switzerland) (see Figure 7.10). Authorisation was

given by the Swiss Federal Office for Civil Aviation33 to perform experiments below

150m of altitude in this area.

Figure 7.10: Satellite image of the test field. Source: http://earth.google.co.uk

In the computer simulator the MAVs were using a fixed Cartesian coordinate

33http://www.bazl.admin.ch/index.html?lang=en

311

system, which is not available to the real robots. The MAVs can nonetheless access

GPS information through their embedded receivers, and use this information to

generate a virtual XY-like reference system more accurate than the GPS data in

itself for navigation purposes. The method we have chosen to make the robots do this

consists of translating the GPS coordinates into an ECEF (Earth-Centred, Earth-

Fixed) Cartesian system. ECEF, also known as “conventional terrestrial” system

represents positions as X, Y, and Z coordinates, with (0, 0, 0) being the mass centre

of the Earth. The X axe passes through the equator at the prime meridian, the Z axe

passes through the north pole, and the Y axe can be determined by the right-hand

rule to be passing through the equator at 90◦ longitude34 (see Figure 7.11). The

conversion from GPS to ECEF is performed in real time by the controller software

running on the MAVs, according to Equations D.5 and D.635.

Figure 7.11: ECEF (Earth Centred, Earth Fixed coordinate system) reference frame.
Source: http://en.wikipedia.org/wiki/ECEF

Metrics used

Four metrics have been elaborated in order to evaluate the performances generated

by the navigation and flocking algorithms: 1) area covered by the flock; 2) average

34http://en.wikipedia.org/wiki/ECEF
35Although the process described in the Appendix does not match exactly with the one described

by Drake, the reader can find more information about GPS data conversion looking at [97].

312

distance between the flock members; 3) mean heading; and 4) standard deviation

from the mean heading. Assuming that N is the number of MAVs in the flock, hi

the absolute heading (within the range [−180; 180]) of the i -th MAV, xi and yi the

x and y coordinates of the i -th MAV respectively.

The area covered by the flock at a certain time is calculated by taking into

account the XY coordinates of all the MAVs (considered as vertices of a bounding

polygon) according to Equation 7.6.

A =
1

2

∣∣∣∣∣∣∣
x1 x2

y1 y2

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
x2 x3

y2 y3

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
... ...

... ...

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
xN x1

yN y1

∣∣∣∣∣∣∣
 (7.6)

The average distance d between flock members corresponds to the mean of all

the
(
N
2

)
intra-flock distances, individually calculated in accordance with Pythagoras’

Theorem (see Equation 7.7).

d =

∑N−1
i=1

∑N
j=i+1

√
(xj − xi)2 + (yj − yi)2(
N
2

) (7.7)

The average heading h is calculated as a mean of circular quantities (see Ap-

pendix D.3). The computation is performed through the C++ atan2() function, fed

in input with the sums of the sin and of the cosine for the headings of all the flock

members, as expressed in Equation 7.836.

h = atan2(
N∑
i=1

sinhi,
N∑
i=1

coshi)×
180

π
(7.8)

Finally, the standard deviation from the average heading indicates how much

each MAV deviates, on average, from the mean heading of the flock. The formula

for the calculation is reported in Equation 7.9, where the difference (hi − h) is

calculated as a subtraction between circular quantities.

σh =

√∑N
i=1(hi − h)2

N
(7.9)

36atan2() returns a value in radians which in Equation 7.8 is converted to degrees.

313

7.3.2 Leader following behaviour through explicit commu-

nication (rendezvous)

The first experiment described herein is focused on the approach described at the

beginning of Section 7.3. A leader MAV is the first vehicle to take off from the ground

and, once it reaches the desired altitude, it starts navigating between two waypoints.

The other MAVs sequentially take off later on, simply aiming to follow the leader and

to adjust their cruise speed in order to get as close to it as possible. The combination

of following a leader navigating through fixed waypoints with speed modifications

has been labeled “rendezvous behaviour”. Algorithm 5 shows, as pseudo-code, the

rules the followers obey to modify their speed in order to approach the leader MAV.

Algorithm 11 Flocking simulator: speed adjustment for rendezvous behaviour (i-th
follower)

if distance(MAVi, waypoint) > distance(leader, waypoint) then
if distance(MAVi, leader) > (flockingdistance+ 2) then
increaseSpeed(MAVi);

else if distance(MAVi, leader) < (flockingdistance− 2) then
decreaseSpeed(MAVi);

end if
else
decreaseSpeed(MAVi);

end if

Waypoint navigation has been implemented in a slightly different way than what

was described in Section 7.2.2. In this scenario, as the leader is the only MAV to

navigate through waypoints, the active waypoint changes when the leader reaches

it. If one of the following MAVs happen to reach the waypoint before the leader,

the latter will keep flying towards that waypoint without modifying its behaviour.

Results on simulation

The rendezvous behaviour has been tested both in simulation and on physical robots.

For what concerns the computer-based experiments, a few details have to be high-

lighted before looking at the results obtained.

First of all, the communication range for simulated MAVs is assumed to be

infinite. This means that the followers can receive information about the leader

314

position and the coordinates of the current waypoint regardless of how far they are

from the leading aircraft. The two waypoints the leader cycles through are deployed

in coordinates (−165, 165, 165) and (165, 165,−165) respectively. The second MAV

takes off 500 time steps after the leader has started. The metrics shown in the

following graphs are collected after the take off of the leader, but they only become

meaningful after the follower is flying also.

Figure 7.12 shows the flight paths followed by the leader (marked in blue) and

by one single follower MAV (green line). Both the aircraft take off from the point

of coordinates (0, 0, 0), and follow exactly the same path to reach the desired al-

titude (which corresponds to 165GU). What can be seen is how the leader, once

it has reached the proper flight altitude, immediately points to the waypoint in

(−165, 165, 165) and, once reached, starts going back and forth from the two way-

points. The follower flies according to a different path for the second part of its flight

as it just goes after the leader. The follower reaches its desired altitude (thus start-

ing its navigation algorithm) when the leader is already flying towards the waypoint

in (165, 165,−165). Very soon this waypoint is reached by the leader who then sud-

denly changes its aim towards (−165, 165, 165), provoking the follower to perform a

U-turn in order to approach it. It is during this phase that the follower, increasing

its speed, eventually reaches the leader. The rendezvous is accomplished.

Figure 7.13 displays the distance between the leader and the follower at the

various time steps. When the follower takes off the distance between the two agents

is about 400GU . Since the takeoff path brings the MAV slightly far from the centre

of the environment this distance quickly increases, reaching a maximum of about

600GU . Then the navigation algorithm comes into play and the follower quickly

reduces its distance to the leader until being able to constantly keep it under the

100GU threshold.

Figure 7.14 shows the standard deviation in the heading of the two MAVs dur-

ing the various time steps. As expected as a direct consequence of the behaviour

described above, when the follower takes off from the ground the heading directions

of the two agents are very different from each other, as any of them can follow differ-

315

−400

−200

0

200

400

−400

−200

0

200

400

0

100

200

300

400

X

Flight paths followed by the entire flock during the experiment

Y

Z
Flight path followed by the leader

Flight path of the follower

Figure 7.12: Rendezvous behaviour: flight paths followed in simulation by two
MAVs, one of which being the leader and the other one the follower

ent navigation rules (the leader already cycling between waypoints, the follower still

busy attempting to reach the desired altitude). As soon as the follower switches to

“follow the leader” mode the standard deviation begins to fall until reaching fairly

low absolute values, well under 10. The pattern of this graph after 1,500 time steps

presents continuous “jumps”. These jumps correspond to the moments in which the

leader quickly turns because it has reached the current waypoint. As the follower

blindly reacts to what the leader does, it requires some time steps in order to regain

the desired alignment. During these transitions, the headings of the two agents will

be significantly misaligned, thus explaining the pattern shown in the graph.

Results on physical robots

A few modifications to the rendezvous algorithm have been required in order to

make it work effectively on real robots. The main issue we have had to address is

related to the fact that physical robots have a limited communication range. On top

of that, wireless radio signals sent through the air often fail to reach the intended

destination for a number of reasons. For example, the USB Wi-Fi dongle installed on

the swinglet, as mentioned in section 7.1, has a theoretical maximum communication

316

0 500 1000 1500 2000 2500
0

100

200

300

400

500

600

700

800

900

1000

Time steps

D
is

ta
n

c
e

 (
G

U
s
)

Distance between the MAVs at the various time steps

Figure 7.13: Rendezvous behaviour: distance in simulation between the leader and
the follower obtained in simulation at the various time steps

range of 500m along a free line-of-sight. In reality, a reliable communication between

two devices like these requires them to be at a much lesser distance. As the MAVs

used can easily fly for a few hundred meters in opposite directions, it is pretty

much guaranteed that there will be, during any tests, moments in which a clear and

working communication link between two or more aircraft is not available.

To tackle this problem we have introduced a new functionality in the controller

driving the followers. Whenever one of the followers has spent the last 2.5 seconds

without receiving any message coming from the leader, it automatically switches

to waypoint navigation. This algorithm does not rely on the previously introduced

waypoints #1 and #2, rather on a third one labelled “waiting point”. This waypoint

is dislocated more or less midway between the other two, thus guaranteeing that

flying around the area a communication link with the leader MAV, which regularly

passes over that zone, will be eventually re-established.

The coordinates of the waypoints used for the experiments described here, to-

gether with the correspondent ECEF values, are reported in Table 7.1 and graph-

ically shown in Figure 7.10. The two waypoints flown through by the leader are

located 465.13 meters far from each other, with the waiting point being stationed

317

0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

70

80

90

Time steps

S
ta

n
d

a
rd

 d
e

v
ia

ti
o

n

Standard deviation for the MAVs headings at the various time steps

Figure 7.14: Rendezvous behaviour: standard deviation in simulation for the MAVs’
heading obtained in simulation at the various time steps

roughly half-way (230m from each of those).

Table 7.1: Coordinates of the waypoints used in experiments with real robots

Waypoint GPS longitude GPS latitude ECEF X ECEF Y
Waypoint #1 6.5947686◦ 46.6293520◦ 504124.85 5190644.22
Waypoint #2 6.5973049◦ 46.6257091◦ 504352.67 5190238.71
Waiting point 6.5960367◦ 46.6275306◦ 504238.76 5190441.47

The communication amongst the MAVs is uni-directional, as it is the leader MAV

only that broadcasts information. Information that has to be received, interpreted

and elaborated accordingly by the followers. The structure of the messages sent

by the leader is quite straightforward. Its components can be seen resumed in

Table 7.237.

The most important parameters are the current GPS coordinates of the MAV

and those of the current waypoint. These two pieces of information are required by

the followers both to determine the position of the leader (and modify their turn rate

accordingly), and to check whether they are in front or behind it (in order to adjust

37The variables marked with the star are those that must be broadcast, whether they are used
or not, because of how the autopilot system has been designed from a software point of view.

318

Table 7.2: Structure of the data messages broadcasted by the leader MAV

Variable name Definition
id* identification code used by the leader
lon* GPS longitude
lat* GPS latitude

goalAlt* goal altitude
metric* set of internal autopilot parameters
currWP identification code of the current waypoint followed

currWPLat GPS longitude of the current waypoint followed
currWPLon GPS latitude of the current waypoint followed

the cruise speed). Some of the information transmitted is redundant. For example,

since the waypoints that the leader flies between are fixed, in principle there is no

need to transmit their coordinates attached to every message. Rather, hard-coding

the GPS coordinates of the two waypoints inside the followers’ controllers, would

make it sufficient for the leader only to broadcast the ID of the current waypoint.

For what concerns the testing of this setup, one successful experiment has been

carried out employing a flock made of four swinglet MAVs. The behaviour pro-

duced by the aircraft can be seen in a short movie available on the Internet38, while

Figure 7.15 shows the flight paths followed.

Looking at Figure 7.15 in more detail, we can identify a few key areas in it.

First of all, the MAVs take off from the point with coordinates approximately

(6.5985, 46.625), perform a U-turn after less than 100m and start gaining elevation,

progressively reaching their goal altitude, flying more or less straight (the deviations

from a straight line in this part of the graph are mostly due to physical factors such

as wind, air resistance, etc.). As it can be seen in the top-right corner of the pic-

ture, all the MAVs used have followed quite different flight trajectories once they

have reached the desired altitude. This is due to the previously discussed algorithm,

which makes the leader aim towards the first waypoint and the followers come along

after him. The two waypoints, whose coordinates have been reported in Table 7.1,

are highlighted in the picture via two rectangles coloured in purple. The “waiting

point” is not reported graphically, but stands more or less midway between the other

38http://www.fabioruini.eu/EPFL/rendezvous.mov

319

6.593 6.594 6.595 6.596 6.597 6.598 6.599 6.6 6.601 6.602
x 107

4.662

4.6622

4.6624

4.6626

4.6628

4.663

4.6632

4.6634
x 108

Y

Flight paths followed by the flock during the entire experiment

Leader
Follower #1
Follower #2
Follower #3

Figure 7.15: Rendezvous behaviour: flight paths followed in reality by four MAVs,
one of which being the leader and the other three the followers

two. When the test is considered completed, the MAVs go to the designated landing

point (in coordinates that are approximately equal to (6.607, 46.625)), over which

they fly in a circle decreasing their altitude until landing.

Unfortunately, no additional metrics are available at this stage because of some

of the issues that have arisen during the only test the author has had the chance to

supervise in person.

7.3.3 Flocking behaviour

As we have just seen, the rendezvous algorithm is used as a preliminary measure

to ensure that all the MAVs involved in the experiment will get close enough to

each other in order to be able to communicate. When this condition is satisfied, the

flocking algorithm can be activated. The implementation of the Boid-like flocking

behaviour used for the simulation experiments presented herein is resumed in Algo-

rithm 12. The algorithm, obeyed by every aircraft, simply consists in two steps. The

first one is the execution of the navigation algorithm, which provides to calculate

and perform a desired turn manoeuvre for the MAV. The second one is the flock-

320

ing part, implemented as one single manoeuvre which steers the MAV towards the

optimal “flocking vector” (calculated as weighted sum of separation and cohesion

vectors/rules).

Algorithm 12 Flocking simulator: navigation and flocking algorithm for boid i

% Navigation
∆h = calculateHeadingDeviation(MAVi, currentWaypoint);
performY aw(MAVi,∆h÷ 4);

% Flocking
~v1 = calculateSeparationV ector(MAVi);
~v3 = calculateCohesionV ector(MAVi);
~total = ~MAVi.position+ ~v1 + (~v3÷ 50);

∆h = calculateHeadingDeviation(MAVi, total);
performY aw(MAVi,∆h÷ 4÷ 3);

Results on simulation

The flocking algorithm for which we have proposed the implementation has been

tested on the computer simulator, where it has proven to be potentially successful.

In the experimental setup described in this section, a flock made of four MAVs

is employed. They start from the middle of the environment, deployed in a V-

formation. The basic navigation task is waypoint navigation. At any time, all the

MAVs fly towards the same waypoint. Whenever one of the aircraft reaches the

current waypoint (e.g. waypoint #1), the active waypoint switches to the other one

(e.g. waypoint #2).

Figure 7.16 shows the flight paths followed by the MAVs. What we can immedi-

ately see when comparing this graph with Figure 7.12 is how the lines corresponding

to the various flight paths do not tend to overlap with each other, but remain quite

separated. This is exactly the sort of effect we would have expected by a flocking

algorithm.

Figure 7.17 portraits the area covered by the flock during the simulation. What

we are looking for in this graph is uniformity in the statistic measured across all

the time steps. If the flocking algorithm works properly, the overall area covered

by the flock as a whole should tend to be more or less the same at all time. Of

course, in our scenario there is waypoint navigation involved. Due to this reason

321

400 300 200 100 0 100 200 300 400
400

300

200

100

0

100

200

300

400
Flight paths followed by the entire flock during the experiment

X

Y

Flight path for MAV #01
Flight path for MAV #02
Flight path for MAV #03
Flight path for MAV #04

Figure 7.16: Flocking behaviour: flight paths followed in simulation by a flock of
four MAVs

the flocking motion is often (whenever the flock has to perform a U-turn going from

one waypoint to the other one) disturbed and struggles in reaching a stable value

as it would happen instead in case of straight flight.

Figure 7.18 shows the average and minimum distance between the members of

the flock at any time step. The average value of this statistic tends to vary quite

frequently over time, while the minimum one remains much more stable instead. The

horizontal green line plotted on the graph represents the threshold value (25GU) we

have used for calculating the separation vector for the flocking. MAVs react to this

rule rarely getting closer to each other than the threshold. When this happens they

immediately respond and re-establish the desired flocking distance.

Finally, Figure 7.19 reports the standard deviation for the MAVs’ headings. The

value scored, most of the time ranging between 1 and 5, suggest how the headings

tend to be aligned with each other.

322

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
100

200

300

400

500

600

700

800

900
Area covered by the flock at the various time steps

Time steps

Ar
ea

 c
ov

er
ed

 (s
qu

ar
ed

 m
et

er
s)

Figure 7.17: Flocking behaviour: area covered in simulation by a flock of four MAVs
at the various time steps

Results on physical robots

Due to time constraints, the implementation of the flocking behaviour on teams of

real robots has not been possible for the author. Rather, this part of the work has

been carried out by other people working at the EPFL in Lausanne, namely Sabine

Hauert, Severin Leven, and Maja Varga under the supervision of Jean-Cristophe

Zufferey and Dario Floreano. This section is therefore based on the results they

have obtained and published in a joint publication [157].

The focus of their work reflects their scientific interest in studying the impact of

both motion constraints and communication range on the success of aerial flocking

in reality.

A few modifications have been made on top of the work we have previously

described herein. First of all, the robot motion has been analysed in simulation using

a proper first order model (already validated in relation to the swinglet platform

in [210]) rather than an incremental geometry approach. The model is described in

Equation 7.10.

323

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

15

20

25

30

35

40

Time steps

D
is

ta
nc

e
(m

et
er

s)

Average and minimum distance between the MAVs at the various time steps

Average distance
Minimum distance
Desired flocking distance

Figure 7.18: Flocking behaviour: average and minimum distance in simulation be-
tween members of the flock measured in simulation at the various time steps

x(t) = x(t− dt) + υ · cos(ω · dt) · dt

y(t) = y(t− dt) + υ · sin(ω · dt) · dt

z(t) = const

(7.10)

For what concerns the flocking behaviour, this has been implemented based

on the entire set of rules elaborated by Reynolds, i.e. alignment, cohesion, and

separation. In order to prevent robots from flying away during the test the migration

rule (as theorised by Crowther [80]) has also been introduced.

In order to implement a realistic communication model in simulation, the au-

thors have implemented Fenton’s shadowing propagation model [106] to probabilisti-

cally determine the range of inter-robot transmissions. In the experiments involving

physical robots, two different line-of-sight communication ranges of 50m and 300m

respectively have been tested. The probability of having an effective communication

in these two scenarios is shown in the graphics in Figure 7.20.

Flocks made of ten MAVs have been used. These teams have been evaluated for

their capacity to flock coherently with varying communication ranges and maximum

324

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

5

6

7

8

9

10

Time steps

St
an

da
rd

 d
ev

ia
tio

n

Standard deviation for the MAVs headings at the various time steps

Figure 7.19: Flocking behaviour: standard deviation in simulation for the MAVs’
heading obtained in simulation at the various time steps

turn rates available to every aircraft. Figure 7.21 shows the flight paths followed

during an entire trial performed on a flock made of nine swinglet robots.

Only two metrics have been employed to measure how well the flocking algorithm

performs. The first one is the standard deviation on all robot headings (calculated

as an average over the last minute of ten trials lasting 15 minutes each). The second

one involves the elaboration of distance matrices storing all the inter-robots dis-

tances within the flock. A distance matrix is calculated every second and compared

with the one created one second before. At any given time, the absolute difference

between the two matrices is computed and all the elements of the resulting matrix

are summed together. This sum is then averaged over each second interval dur-

ing the last minute of ten trials elapsed (each of them, again, lasting 15 minutes).

Figure 7.22 displays the values measured for these two metrics, with Figure 7.22(a)

focusing on the heading standard deviation and Figure 7.22(b) highlighting the

intra-flock distance.

The results shown exhibit the expected tradeoff: the higher the turn rate and

the communication range, the better the flocking behaviour emerged. Interestingly

enough, the communication range seems to have a more significant impact than the

325

Figure 7.20: Inter-robot communication probability in function of the distance be-
tween the robots. The upper figure is related to Wi-Fi dongles set up for a 50m
line-of-sight communication range, the lower one for a 300m range. The three lines
in each plot respectively represent the lower quartile, the median, and the upper
quartile. Source: [157]

turn rate in determining the ability of the MAVs to flock in a coherent way.

The configurations having obtained the best results in simulation have confirmed

their validity on the experiments carried out on physical robots. By using a conser-

vative parameter selection, with a communication range of 300m and a maximum

turn rate of 0.7rad/sec, coherent flocking on fixed-wing physical robots has been

easily achieved.

7.4 Conclusions

The research presented in this chapter has covered two main aspects.

First of all, the work carried out on the new software simulator has demonstrated

how the popular algorithm for Reynolds’ flocking can be successfully applied to

fixed-wing aircraft, notwithstanding their motion constraints. Basing our work on

the implementation of the Reynolds’ algorithm proposed by Parker, we have seen

how teams of aircraft adhering to a subset of the classic flocking rules (separation

326

Figure 7.21: Flocking behaviour in reality: flight paths followed by a flock of nine
MAVs employed during a trial. Source: [157]

and cohesion specifically) can form coherent flocks. Being able to flock gives to teams

of MAVs several advantages. One of the most prominent consists in the fact that

independently flying aircraft can gather together, create a wireless communication

link between them, and share their resources in order to perform computationally

intensive tasks (e.g. complex image processing) that would be otherwise impossible

to be carried out in real-time by a single MAV. On top of that flocking behaviour we

have also developed a “leader-following” algorithm, in which one of the aircraft takes

the role of “leader” and drives the entire flock. The flocking behaviour has proven

to be resilient, as the flock quickly reshapes itself in the event of sudden changes in

the direction of the leader that disrupt the flock. Also, a “rendezvous” algorithm

has been proposed to help in creating a flock out of MAVs taking off independently

from the ground at different times.

In the second part of the chapter we have seen the example of an autonomous

controller implementing Reynolds’ flocking and working on a real aircraft, specifi-

cally a SenseFly swinglet MAV. Despite the control algorithms eventually used on

the aircraft being slightly different than those proposed in the first paragraphs, the

underlying design principles are the same in terms of outputs they generate. This

demonstrates how, once the compulsory fine-tuning of all the parameters involved

is done successfully, the algorithm we have proposed in this chapter and, even most

327

(a) (b)

Figure 7.22: Graphical representations of how communication range and turn rate
impact respectively on (a) the standard deviation in heading; (b) the intra-flock
distance. Source: [157]

importantly, those described in chapters 5 and 6, are expected to work effectively

on a real robotics platform.

Chapter 8

Conclusions and Future Work

8.1 Conclusions

Many different topics have been touched upon in this thesis. The principal aim

of the work presented herein was in extending the range of applicability of the

Evolutionary Robotics approach to the design of autonomous controllers for fixed-

wing aerial robots, a domain which did not receive a great deal of attention in the

past from researchers in the ER field.

The 2D simulator presented in chapter 5 has provided a general framework for

demonstrating how Evolutionary Robotics controllers can easily deal with the typi-

cal motion constraints of fixed-wing aircraft. In the various simulation experiments

carried out fairly sophisticated behaviours have evolved, such as, apart from ba-

sic navigation towards a specific target area, obstacle avoidance (which is not by

any mean an easy task when motion constraints as those characterising fixed-wing

aircraft are involved), target tracking (in which the MAVs demonstrated to cope

effectively with targets moving at different speeds), and cooperative/collective be-

haviour based upon implicit communication strategies. Concerning the last setup,

from a theoretical point of view it has been shown how complex behaviours requir-

ing a non-trivial degree of cooperation between the team members can be achieved

through a very minimalist set of information (implicitly, i.e. not purposely) ex-

changed between the agents involved in the task. An interesting point is also in how

329

the cooperation emerges. No central controllers are used1 in our experiments and

the single individuals do not have any sort of knowledge about what the “global”

task the team they are part of is expected to perform. Nonetheless, cooperative

behaviours arise as a complex phenomenon from the simple interactions (amongst

them and with the environment) of many individuals, each of them simply perform-

ing its own task alone. Individuals being evolved to maximise a fitness function

which rewards the collective behaviour of the entire group, unconsciously making

every MAV a gear in a bigger mechanism.

The experiments carried out on the two-dimensional simulator have led to several

technical considerations. In the first experimental setup we have contrasted the

performances of eight different neural network controller topologies, mostly focusing

our attention on the different ways of encoding the input information (MAV-target

distance and MAV-target relative angle) possible. While the sort of encoding used

for the MAV-target distance did not seem to affect the performances of the controller

very much, a more critical role to be played by the encoding of the MAV-target angle

has resulted. Architectures encoding this information in a discrete way (with the

angle divided in several “slices” each of them represented by a three-digit binary

number via three input neurons) performed better than those relying on a continuous

encoding. In the second experimental setup we have introduced obstacles inside the

reference environment and evaluated different configurations of ultra-sonic sensors.

The evolutionary process eventually managed to create a controller working with

an accuracy of 100% for all the configurations tested, although the evolution went

more smoothly for those relying on three sensors (one of which was facing forward).

In the third experimental setup (where the target can spot an approaching MAV

and move accordingly trying to escape from it) we have contrasted five scenarios in

which we varied the speed of the target (we have used respectively one sixth, one

fifth, one fourth, one third, and half the speed of the aircraft). For all the target’s

1A critic might argue that the models we have proposed in this thesis are not examples of
“absolute” distribute control, as they all rely on the existence of a “central” system knowing the
location of the target and broadcasting this information in real-time to the MAVs. Nonetheless
(and despite the fact that the “limitations” dictated by such an assumption could be overcame
in several ways) we fully consider our models examples of distributed control, as several agents
are coordinated, in some scenarios also to perform cooperatively, by individual and separated
controllers exclusively.

moving speeds the evolutionary process led to controllers with a maximum success

rate above the success threshold adopted (90%). Finally, also for what concerns the

fourth experimental setup (in which the aircraft has to approach the target area in

a coordinated fashion, thus making the task significantly more difficult to be dealt

with for the MAVs’ controllers), we successfully developed an autonomous controller

working with over a 90% accuracy. Unfortunately, this was possible only with the

target standing still in a certain position. Using a moving target has brought down

the performances to slightly below the success threshold.

Chapter 5 has also presented some analysis carried out in order to test the

validity of the simulation model we have created in terms of generalisation. A few

modifications to the fitness function used for the genetic algorithm have allowed to

evolve controllers coping effectively with a different environment than the one used in

our simulations, at least for what concerns basic navigation and obstacle-avoidance.

The studies carried out using the 3D model and described in chapter 6 have repli-

cated the experimental setups tested in the two-dimensions model, with the notable

exception consisting in no obstacles being deployed into the environment anymore.

The goal of these experiments was to evaluate whether controllers designed accord-

ing to the Evolutionary Robotics principles could properly drive MAVs capable of

manoeuvring over three dimensions (yaw, pitch, and roll) with levels of performance

comparable to those achieved in the 2D simulations. Several interesting results have

emerged from these experiments. The most prominent finding consists in an in-

verse correlation between success rate and degrees of freedom manoeuvrable by the

controllers. This result was far from unexpected as, obviously, an autonomous con-

troller struggles to control a device the more this device is complex. The controllers

that emerged from the evolutionary process in the three-dimensional simulator have

therefore proven to be highly efficient when the only degree of freedom available

is yaw, less performant when both yaw and pitch are used, rarely good when also

roll is introduced. We must nonetheless consider that the autopilot systems often

being mentioned throughout this thesis can take care of flight stabilisation and low-

level flight issues in general, thus working as a sort of middleware and relieving the

high-level controller (i.e., in our case, the neural network) from having to deal with

certain task. We can easily imagine, for example, that in real applications we do

not need to put our controller in charge of the rotations around the roll axis.

Looking in more detail to the results obtained by these experiments, in the first

set of simulations we aimed to identify the best neural network topology for ba-

sic navigation. Several architectures were contrasted (the main differences amongst

them consisted in the degrees of freedom available, in the presence/absence of a layer

of hidden units, and in being purely feed-forward rather than including memory com-

ponents) and most of them exceeded the 90% success rate for the best individuals.

Particularly poor performances have been nonetheless produced by networks im-

plementing memory structures (Jordan and Elmann networks). One architecture

managed anyway to exceed our success threshold while in control of all the rotation

axes available. This architecture was then used as a basis (together with another

topology, similar but including a hidden layer) for the following analysis. In the sec-

ond set of experiments (involving a target able to move away from the approaching

MAV, with the movement repository of the target depending upon the degrees of

freedom available to the aircraft) the results showed that satisfying performances

can be obtained by evolved controllers dealing with targets moving at one fifth and

one fourth of the MAVs’ speed. For targets moving at one third of the speed of their

chasers, the performance stopped at 89%, still very close to our success threshold.

In the third and final experimental setup, the one involving implicit cooperation,

unfortunately the results obtained have not been favourable. Out of the twelve con-

troller topologies tested (half of those designed for the first 3D experimental setup),

only one architecture (working on a single DoF) managed to carry out the tests

with a success rate sufficient to exceed the 90% success threshold we decided to

use. Things have improved quite clearly adopting incremental evolution, but not

enough to qualitatively modify the meaning of the results obtained in this scenario.

Although it has been demonstrated that basic navigation, obstacle avoidance, and

target tracking are tasks that an evolutionary controller can comfortably deal with

both in two and three dimensional models, at the current stage more complex tasks

requiring cooperation seem not to be solvable by evolutionary controllers designed

according to our methodology.

Chapter 7 has described an alternative approach to collective behaviour and

distributed control that we have developed, based upon flocking algorithms. The

experiments on flocking behaviour have an importance that goes well beyond the

results presented in that chapter. What has been demonstrated is that, thanks

to the recent developments in the field of unmanned aerial vehicles, autonomous

controllers for fixed-wing MAVs can be transferred from simulations to physical

robots in a relatively straightforward way. Again, this is mainly due to autopilot

systems, as they can provide a simple interface to control an aircraft based on basic

commands. An autonomous controller can indeed instruct the controlled aircraft to

do anything that is within its behavioural repository, by simply producing a single

value to be passed to the autopilot onboard. It is the latter, which takes care of all

the low-level issues.

During the many informal discussions the author had with experts in the field

at the beginning of his Ph.D. programme, the criticism that was raised most of-

ten concerned the alleged impossibility of designing autonomous controllers relying

on software simulators that do not take into account all the aerodynamics effects

existing in reality. What we have seen instead is that extremely basic computer

models, as those presented here and based on incremental geometric flight, are more

than adequate even for achieving fairly sophisticated behaviours. Low-level control

issues (flight stabilisation, etc.) can be plainly ignored and the focus of the research

shifted on the navigation part (or high-level control) only. In other words, designing

autonomous controllers for fixed-wing aerial robots is not an unreasonably complex

task anymore, and does not require in-depth knowledge of aerodynamics (as long as

a “plausible” flight model is implemented). This opens the door for many innovative

approaches to be employed with success on the domain. We have seen one of them

in this thesis, but many others are possible.

8.2 Future work

There are a number of aspects of the present research that could be further ad-

dressed and extended. Amongst the possible future research directions that might

be possible to investigate we can list those that are the most interesting from the

author’s point of view.

• introduction of explicit communication: good performances have been achieved

in the cooperative tasks carried out in the 2D model using a simple form of

implicit communication. This approach nonetheless has its limitations, as the

array of tasks that autonomous robots can undertake based upon such a form of

communication is necessarily restricted. Introducing the possibility of explicit

communication, either relying on a vocabulary provided by the experimenter

or using one developed by the robots themselves, should enable the extension

of the range of cooperative tasks that the MAVs can successfully deal with;

• obstacle avoidance in reality : as we have seen, testing obstacle avoidance be-

haviours in reality when using fixed-wing aircraft is an extremely challenging

task. This kind of aircraft must in fact be flying at a significant altitude, at

which in general it is not possible to find any obstruction. A possible solution

would be to carry out these tests within a urban area where tall buildings

are present. Unfortunately, due to understandable safety reasons, it is not

possible to obtain the required authorisation to perform experiments such as

these. Furthermore, this kind of aerial platform tends to be relatively fragile

and the potential risk of damaging the MAVs during the tests would be high.

A potential answer to this problem could consist in “simulating” the obsta-

cles via software. The computer onboard the MAV may for example associate

certain specific coordinates to “obstacles”, thus causing false sensor readings

entering the control loop. The aircraft would therefore react as if it were in

the presence of an obstacle. Analysing the log files at the end of the experi-

mental session would enable an evaluation of the effectiveness of the obstacle

avoidance behaviour;

• target tracking in reality : with the availability of the proper hardware, it

would be possible to test in reality the target tracking ability of the MAVs.

One possible scenario would consist in having a wheeled vehicle moving on

the ground (either autonomously - following a pre-planned navigation path

or moving in response to its sensorial input - or remotely controlled by a

human operator) constantly emitting data signals. Equipping the aircraft with

receivers capable of capturing that signal, its strength and direction could be

used to infer its position, in turn making possible its tracking.

335

336

Bibliography

[1] AAström, K. J., and Hägglund, T. PID Controllers: Theory, Design,
and Tuning, 2nd ed. Instrument Society of America, Research Triangle Park,
NC, USA, 1995.

[2] Aberle, B. Clean & Quiet: The Guide to Electric Powered Flight. Covered
Bridge Press, N. Attleboro, MA, USA, 1996.

[3] Ablavsky, V., Stouch, D., and Snorrason, M. Search Path Optimiza-
tion for UAVs using Stochastic Sampling with Abstract Pattern Descriptors.
In Proceedings of the AIAA Guidance, Navigation, and Control Conference
and Exhibit (2003).

[4] Abzug, M., and Larrabee, E. Airplane Stability and Control: a History
of the Technologies that Made Aviation Possible. Cambridge University Press,
Cambridge, MA, USA, 2002.

[5] Acerbi, A., and Parisi, D. Cultural Transmission Between and Within
Generations. Journal of Artificial Societies and Social Simulation 9, 1 (2006).

[6] Afshar, S., Yousefi-Koma, A., Shahi, H., Mohammadshahi, D., and
Maleki, H. Design and Fabrication of a Delta Wing Micro Aerial Vehicles.
International Journal of Mechanics 1, 4 (2007), 51–58.

[7] Ali, K., and Carter, L. Miniature-Autopilot Evaluation System. Journal
of Computer Science 4, 1 (2008), 30–35.

[8] Allen, J., and Walsh, B. Enhanced Oil Spill Surveillance, Detection and
Monitoring through the Applied Technology of Unmanned Air Systems. In
Proceedings of the 2008 International Oil Spill conference (2008), pp. 113–
120.

[9] Allred, J., Hasan, A., Panichsakul, S., Pisano, W., Gray, P.,
Huang, J., Han, R., Lawrence, D., and Mohseni, K. SensorFlock:
An Airborne Wireless Sensor Network of Micro-Air Vehicles. In Proceedings
of the 5th International Conference on Embedded Networked Sensor Systems
(2007), pp. 117–129.

[10] Almeida, P., Bencatel, R., Goncalves, G., Sousa, J., and Ruetz,
C. Experimental Results on Command and Control of Unmanned Air Vehicle
Systems. In Proceedings of IAV’07, the 6th IFAC Symposium on Intelligent
Autonomous Vehicles (2007).

[11] Alvis, W., Murthy, S., Valavanis, K., Moreno, W., and Katkoori,
S. FPGA Based Flexible Autopilot Platform for Unmanned Systems. In

337

Proceedings of the 15th Mediterranean Conference on Control & Automation
(2007), pp. T34–005.

[12] Amidi, O., Kanade, T., and Miller, R. Vision-Based Autonomous He-
licopter Research at Carnegie Mellon Robotics Institute 1991-1997. CMU
Robotics Institute, Paper 21 (1998).

[13] Anton, S., Erturk, A., and Inman, D. Energy Harvesting from Small
Unmanned Air Vehicles. In Proceedings of the 17th International Symposium
on Application of Ferroelectrics, 3rd Annual Energy Harvesting Workshop
(2008).

[14] Antsaklis, P. Defining Intelligent Control. Report of the Task Force on
Intelligent Control. Tech. Rep. December, IEEE Task Force on Intelligent
Control, 1993.

[15] Antsaklis, P. J., Passino, K. M., and Wang, S. An Introduction to
Autonomous Control Systems. IEEE Control Systems (1991), 5–13.

[16] Arkin, R. C. Governing Lethal Behavior: Embedding Ethics in a Hybrid De-
liberative/Reactive Robot Architecture - PART I: Motivation and Philosophy.
In Proceedings of the 3rd ACM/IEEE International Conference on Human
Robot Interaction (2008), pp. 121–128.

[17] Asada, M., MacDorman, K., Ishiguro, H., and Kuniyoshi, Y. Cogni-
tive Developmental Robotics as a New Paradigm for the Design of Humanoid
Robots. Robotics and Autonomous Systems 37 (2001), 185–193.

[18] Astrom, K., and Wittenmark, B. Computer Controlled Systems: Theory
and Design. Prentice Hall Professional, New York, NY, USA, 1984.

[19] Back, T. Evolutionary algorithms. AGM SIGBIO Newsletter - Special Edi-
tion on Biologically Motivated Computing 12, 2 (1992), 26–31.

[20] Back, T., Hoffmeister, F., and Schwefel, H. P. A Survey of Evolution
Strategies. In Proceedings of ICGA 1991, the Fourth International Conference
on Genetic Algorithms (1991).

[21] Back, T., Rudolph, G., and Schwefel, H.-P. Evolutionary Program-
ming and Evolution Strategies: Similarities and Differences. Proceedings of
the 2nd Annual Conference on Evolutionary Programming (1993).

[22] Baker, J. Adaptive Selection Methods for Genetic Algorithms. In Proceed-
ings of ICGA 1985, the First International Conference on Genetic Algorithms
(1985), pp. 101–111.

[23] Baker, J. Reducing Bias and Inefficiency in the Selection Algorithm. In
Proceedings of ICGA 1987, the Second International Conference on Genetic
Algorithms and their Application (1987), pp. 14–21.

[24] Balch, T., and Arckin, R. C. Behavior-based Formation Control for
Multi-robot Teams. IEEE Transactions on Robotics And Automation 14
(1999), 926–939.

338

[25] Bamberger, R., Watson, D., Scheidt, D., and Moore, K. Flight
Demonstrations of Unmanned Aerial Vehicle Swarming Concepts. John Hop-
kins APL Technical Digest 27, 1 (2006), 41–55.

[26] Barlow, G., and Oh, C. Evolved Navigation Control for Unmanned Aerial
Vehicles. Frontiers in Evolutionary Robotics (2008), 596–621.

[27] Barlow, G., Oh, C., and Grant, E. Incremental Evolution of Au-
tonomous Controllers for Unmanned Aerial Vehicles using Multi-objective Ge-
netic Programming. In Proceedings of the 2004 IEEE Conference on Cyber-
netics and Intelligent Systems (2004), pp. 689–694.

[28] Barshan, B., and Durrant-Whyte, H. Inertial Navigation Systems for
Mobile Robots. IEEE Transactions on Robotics and Automation 11, 3 (1995),
328–342.

[29] Baumgartner, F. R., and Jones, B. D. Agendas and Instability in Amer-
ican Politics, 2nd ed. The University of Chicago Press, Chicago, IL, USA,
2009.

[30] Bayindir, L., and Sahin, E. A Review of Studies in Swarm Robotics.
Turkish Journal of Electrical Engineering 15, 2 (2007), 115–147.

[31] Beard, R., McLain, T., Nelson, D., Kingston, D., and Johanson,
D. Decentralized Cooperative Aerial Surveillance Using Fixed-Wing Miniature
UAVs. In Proceedings of the IEEE (2006), vol. 94, pp. 1306–1324.

[32] Beer, R. A Dynamical Systems Perspective on Agent-Environment Interac-
tion. Artificial Intelligence 72 (1995), 173–215.

[33] Bekey, G. Autonomous Robots: From Biological Inspiration to Implementa-
tion and Control. The MIT Press, Cambridge, MA, USA, 2005.

[34] Bell, A., Pace, A., and Santos, R. Evolutions of Communication. http:
//www.cs.swarthmore.edu/~meeden/cs81/s09/finals/AlexAndrewRaul.pdf,
2009.

[35] Berthouze, L., and Metta, G. Epigenetic Robotics: Modelling Cognitive
Development in Robotic Systems. Cognitive Systems Research, 6 (2005), 189–
192.

[36] Bertuccelli, L., and How, J. UAV Search for Dynamic Targets with
Uncertain Motion Models. In Proceedings of the 45th IEEE Conference on
Decision & Control (2006), pp. 5941–5946.

[37] Betts, R. K. Analysis, War, and Decision: Why Intelligence Failures Are
inevitable. World Politics 31, 1 (1978), 61–89.

[38] Beyeler, A., Magnenat, S., and Habersaat, A. Ishtar: a Flexible and
Lightweight Software for Remote Data Access. In Proceedings of EMAV08,
the 2008 European Micro Air Vehicle Conference (2008).

[39] Beyer, H.-G. Evolution strategies. http://www.scholarpedia.org/wiki/

index.php?title=Evolution_strategies, 2007.

339

[40] Beyer, H.-G., and Schwefel, H.-P. Evolution strategies. A Comprehen-
sive Introduction. Natural Computing 1 (2002), 3–52.

[41] Biro, D., Sumpter, D., Meade, J., and Guilford, T. From Compro-
mise to Leadership in Pigeon Homing. Current Biology, 16 (2006), 2123–2128.

[42] Blackman, S., and Popoli, R. Design and Analysis of Modern Tracking
Systems. Artech House, Boston, MA, USA, 1999.

[43] Bolkcom, C. Homeland Security: Unmanned Aerial Vehicles and Border
Surveillance. CSR Report for Congress RS21698, U.S. Congress, 2004.

[44] Bonabeau, E. Agent-based Modeling: Methods and Techniques for Simu-
lating Human Systems. PNAS 99, 3 (2002), 7280–7287.

[45] Bongard, J., and Paul, C. Making Evolution an Offer It Can’t Refuse:
Morphology and the Extradimensional Bypass. In Proceedings of ECAL 2001,
the Sixth European Conference on Artificial Life (2001), pp. 401–412.

[46] Borenstein, J. The Ethics of Autonomous Military Robots. Studies in
Ethics, Law, and Technology 2, 1 (2008).

[47] Borenstein, J., and Koren, Y. Obstacle Avoidance with Ultrasonic Sen-
sors. IEEE Journal of Robotics and Automation 4, 2 (1988), 213–218.

[48] Boschetti, F., Prokopenko, M., Macreadie, I., and Grisogono,
A.-M. Defining and Detecting Emergence in Complex Networks. In Proceed-
ings of KES 2005, the 9th International Conference on Knowledge-Based and
Intelligent Information & Engineering Systems (2005), pp. 573–580.

[49] Braitenberg, V. Vehicles. Experiments in Synthetic Psychology. MIT Press,
Cambridge, MA, USA, 1984.

[50] Brooks, R. A Robust Layered Control System For A Mobile Robot. IEEE
Journal of Robotics and Automation 2, 1 (1986), 14–23.

[51] Brooks, R. A Robot that Walks; Emergent Behaviors from a Carefully
Evolved Network. Neural Computation 1, 2 (1989), 253–262.

[52] Brooks, R. Intelligence Without Representation. Artificial Intelligence, 47
(1991), 139–159.

[53] Brooks, R. Artificial Life and Real Robots. In Towards a Practice of Au-
tonomous Systems: Proceedings of the First European Conference on Artificial
Life (Cambridge, MA, USA, 1992), F. J. Varela and P. Bourgine, Eds., MIT
Press, pp. 3–10.

[54] Brooks, R. Flesh and Machines. How Robots will Change Us. Pantheon,
New York, NY, USA, 2002.

[55] Bryson, A., and Ho, Y.-C. Applied Optimal Control. Optimization, Esti-
mation, and Control. Taylor & Francis, London, UK, 1975.

340

[56] Burdakov, O., Doherty, P., Holmberg, K., Kvarnstrom, J., and
Olsson, P.-M. Positioning Unmanned Aerial Vehicles as Communication
Relays for Surveillance Tasks. In Proceedings of Robotics: Science and Systems
Conference (2009).

[57] Buskey, G., Roberts, J., Corke, P., Dunbabin, M., and Wyeth, G.
The CSIRO Autonomous Helicopter Project. In Proceedings of the Interna-
tional Symposium on Experimental Robotics (2002).

[58] Buskey, G., Roberts, J., Corke, P., Ridley, P., and Wyeth, G.
Sensing and Control for a Small-Size Helicopter. In Experimental Robotics
VIII, B. Siciliano and P. Dario, Eds. Springer-Verlag, Berlin Heideberg, Ger-
many, 2003, pp. 476–486.

[59] Buskey, G., Wyeth, G., and Roberts, J. Autonomous Helicopter Hover
Using an Artificial Neural Network. In Proceedings ICRA 2001, the IEEE
International Conference on Robotics and Automation (2001), vol. 2, pp. 1635–
1640.

[60] Cai, G., Cai, A., Chen, B., and Lee, T. Construction, Modeling and Con-
trol of a Mini Autonomous UAV Helicopter. In Proceedings of ICAL 2008, the
IEEE International Conference on Automation and Logistics (2008), pp. 449–
454.

[61] Cai, G., Chen, B., and Lee, T. An Overview on Development of Minia-
ture Unmanned Rotorcraft Systems. Frontiers of Electrical and Electronic
Engineering in China 5, 1 (2010), 1–14.

[62] Cambone, S., Krieg, K., Pace, P., and II, L. W. Unmanned Aircraft
Systems Roadmap 2005-2030. Tech. rep., U.S. Department of Defense, Office
of the Secretary of Defense, 2005.

[63] Canamero, L. Emotion Understanding From the Perspective of Autonomous
Robots Search. Neural Networks, 18 (2005), 445–455.

[64] Canning, J. S. A Concept of Operations for Armed Autonomous Systems.
http://www.dtic.mil/ndia/2006disruptive_tech/canning.pdf, 2006.

[65] Cannon, H. G. What Lamarck really said. Proceedings of the Linnean
Society of London 168, 1-2 (1957), 70–87.

[66] Chao, H., Cao, Y., and Chen, Y. Autopilots for Small Fixed-Wing Un-
manned Air Vehicles: A Survey. Proceedings of the 2007 IEEE International
Conference on Mechatronics and Automation (2007), 3144–3149.

[67] Chew, A. After London: The Role of the Micro Air
Vehicle (MAV) in Counter-Terrorism. http://www.isn.

ethz.ch/isn/Digital-Library/Publications/Detail/?ots591=

0c54e3b3-1e9c-be1e-2c24-a6a8c7060233&lng=en&id=13374, 2005.

[68] Childress, J. F. Just-War Theories: The Bases, Interrelations, Priorities,
and Functions of Their Criteria. Theological Studies 39, 3 (1978), 427–445.

341

[69] Christensen, A. L., and Dorigo, M. Incremental Evolution of Robot
Controllers for a Highly Integrated Task. From Animals to Animats 9. Proceed-
ings of SAB 2006, the 9th International Conference on Simulation of Adaptive
Behavior (2006), 473–484.

[70] Clapper, J., Young, J., Cartwright, J., and Grimes, J. Unmanned
Systems Roadmap 2007-2032. Tech. rep., U.S. Department of Defense, 2007.

[71] Clark, A., and Grush, R. Towards a Cognitive Robotics. Adaptive Be-
haviour 7, 1 (1999), 5–16.

[72] Clarke, R. A., and Knake, R. Cyber War. The Next Threat to National
Security and What to Do About It. Ecco Press, Manhattan, NY, 2010.

[73] Cliff, D., Harvey, I., and Husbands, P. Explorations in Evolutionary
Robotics. Adaptive Behavior 2, 1 (1993), 73–110.

[74] Cohen, C., McNally, B., and Parkinson, B. Flight Tests of Attitude
Determination Using GPS Compared Against an Inertial Navigation Unit. In
Proceedings of the ION National Technical Meeting (1993).

[75] Coifman, B., McCord, M., Mishalani, R., and Redmill, K. Surface
Transportation Surveillance from Unmanned Aerial Vehicles. In Proceedings
of the 83rd Annual Meeting of the Transportation Research Board (2004).

[76] Cook, M. Flight Dynamics Principles. Elsevier: Butterworth-Heinemann,
Waltan, MA, USA, 2007.

[77] Corner, J. J., and Lamont, G. B. Parallel Simulation of UAV Swarm
Scenarios. In Proceedings of the 2004 Winter Simulation Conference (2004),
pp. 355–363.

[78] Craighead, J., Murphy, R., Burke, J., and Goldiez, B. A Survey of
Commercial & Open Source Unmanned Vehicle Simulators. In Proceedings of
ICRA 2007, the IEEE International Conference on Robotics and Automation
(2007), pp. 852 – 857.

[79] Crowther, B., and Rivier, X. Flocking of Autonomous Unmanned Air
Vehicles. In Proceedings of the 17th Bristol UAV Conference (2002).

[80] Crowther, W. Rule-Based Guidance for Flight Vehicle Flocking. In Proceed-
ings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace
Engineering (2004), vol. 218, pp. 111–124.

[81] Cutler, M., McLain, T., Beard, R., and Capozzi, B. Energy Harvest-
ing and Mission Effectiveness for Small Unmanned Aircraft. In Proceedings of
the American Institute of Aeronautics and Astronautics (2010).

[82] Dalamagkidis, K., Valavanis, K., and Piegl, L. Evaluating the Risk of
Unmanned Aircraft Ground Impacts. In Proceedings of the 16th Mediterranean
Conference on Control and Automation (2008), pp. 709–716.

[83] Darwin, C. On the Origin of Species by Means of Natural Selection or the
Preservation of Favored Races in the Struggle for Life. John Murray, London,
UK, 1859.

342

[84] Dasgupta, P. A Multiagent Swarming System for Distributed Automatic
Target Recognition Using Unmanned Aerial Vehicles. IEEE Transactions on
Systems, Man, and Cybernetics - Part A: Systems and Humans 38, 3 (2008),
549–563.

[85] Davenport, W. W. Gyro!: The Life and Times of Lawrence Sperry. Scribner
Publishing, New York, NY, USA, 1978.

[86] Davis, L. Military Significance of Draper’s Work for the Air Force. In Air
Space and Instruments, S. Lees, Ed. McGraw-Hill, New York, NY, USA, 1963.

[87] De Jong, K. Analysis of the Behavior of a Class of Genetic Adaptive Sys-
tems. PhD thesis, University of Michigan, MI, USA, 1975.

[88] De Marqui, C., Erturk, A., and Inman, D. Finite Element Analysis of
a UAV Wing Spar with Piezoceramics for Vibration Energy Harvesting. In
Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structure, Structural
Dynamics, and Materials Conference (2009).

[89] De Nardi, R., Holland, O., Woods, J., and Clark, A. SwarMAV: A
Swarm of Miniature Aerial Vehicles. In Proceedings of the 21st Bristol UAV
Systems Conference (2006).

[90] DeLuca, A. Experimental Investigation into the Aerodynamic Performance
of both Rigid and Flexible Wing Structured Micro-Air-Vehicles. Master’s
thesis, Air Force Institute of Technology, Wright-Patterson Air Force Base,
Ohio, OH, USA, 2004.

[91] Deming, R., Perlovsky, L., and Brockett, R. Sensor Fusion for
Swarms of Unmanned Aerial Vehicles using Modeling Field Theory. In Pro-
ceedings of KIMAS 2005, the IEEE International Conference on Integration
of Knowledge Intensive Multi-Agent Systems (2005), pp. 122–127.

[92] Deng, X., Schenato, L., and Sastry, S. Model Identification and Atti-
tude Control for a Micromechanical Flying Insect Including Thorax and Sensor
Models. In Proceedings of ICRA 2003, the IEEE International Conference on
Robotics & Automation (2003), pp. 1152–1157.

[93] Dillingham, G. L. Unmanned Aircraft Systems. Federal Actions Needed to
Ensure Safety and Expand Their Potential Uses within the National Airspace
System. Tech. rep., GAO, United States Government Accountability Office,
2008.

[94] Doherty, P., Granlund, G., Kuchcinski, K., Sandewall, E., Nord-
berg, K., Skarman, E., and Wiklund, J. The WITAS Unmanned Aerial
Vehicle Project. In Proceedings of ECAI 2000, the 14th European Conference
on Artificial Intelligence (2000), pp. 747–755.

[95] Dong, M., and Sun, Z. A Behavior-based Architecture for Unmanned
Aerial Vehicles. In Proceedings of the 2004 IEEE International Symposium on
Intelligent Control (2004), pp. 149–155.

[96] Doyle, J. C., Francis, B. A., and Tannenbaum, A. R. Feedback Control
Theory. Dover Publications, New York, NY, USA, 2009.

343

[97] Drake, S. Converting GPS Coordinates to Navigation Coordinates
(ENU). http://dspace.dsto.defence.gov.au/dspace/bitstream/1947/3538/

1/DSTO-TN-0432.pdf, 2002.

[98] Duranti, S., Conte, G., Lundstrom, D., Rudol, P., Wzorek, M.,
and Doherty, P. LinkMAV, a Prototype Rotary Wing Micro Aerial Ve-
hicle. In Proceedings of the 17th IFAC Symposium on Automatic Control in
Aerospace (2007).

[99] Eiben, A., Haasdijk, E., and Bredeche, N. Embodied, On-line, On-
board Evolution for Autonomous Robotics. In Symbiotic Multi-Robot Or-
ganisms, P. Levi and S. Kernbach, Eds. Springer-Verlag, Berlin Heideberg,
Germany, 2010, pp. 367–388.

[100] Eisenbeiss, H. A Mini Unmanned Aerial Vehicle (UAV): System Overview
and Image Acquisition. International Archives of Photogrammetry. Remote
Sensing and Spatial Information Sciences 36, 5/W1 (2004).

[101] Elman, J. Finding Structure in Time. Cognitive Science 14 (1990), 179–211.

[102] Eng, P., Mejias, L., Walker, R., and Fitzgerald, D. Simulation of a
Fixed-wing UAV Forced Landing with Dynamic Path Planning. In Proceedings
of the Australasian Conference on Robotics and Automation (2007).

[103] Epstein, A. Millimeter-Scale MEMS Gas Turbine Engines. In Proceedings
of ASME Turbo Expo 2003, Power for Land, Sea, and Air (2003).

[104] Etkin, B., and Reid, L. Dynamics of Flight. Stability and Control. John
Wiley & Sons, Inc., New York, NY, USA, 1996.

[105] Everaerts, J. The Use of Unmanned Aerial Vehicles (UAVs) for Remote
Sensing and Mapping. International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences (2008), 1187–1192.

[106] Fenton, L. The Sum of Log-Normal Probability Distributions in Scatter
Transmission Systems. IRE Transactions on Communication Systems (1960),
57–67.

[107] Ficici, S., Watson, R., and Pollack, J. Embodied Evolution: A Re-
sponse to Challenges in Evolutionary Robotics. In Proceedings of the Eighth
European Workshop on Learning Robots (1999), pp. 14–22.

[108] Fikes, R., and Nilsson, N. STRIPS: A New Approach to the Application
of Theorem Proving to Problem Solving. Artificial Intelligence 2, 3-4 (1971),
189–208.

[109] Filliat, D., Kodjabachian, J., and Meyer, J.-A. Incremental Evolution
of Neural Controllers for Navigation in a 6-legged Robot. Proceedings of the
Fourth International Symposium on Artificial Life and Robotics (1999).

[110] Fletcher, B. Autonomous Vehicles and the Net-Centric Battlespace. Pro-
ceedings of the 2000 International UUV Symposium (2000).

[111] Floreano, D., Hauert, S., Leven, S., and Zufferey, J.-C. Evolution-
ary Swarms of Flying Robots. In Proceedings of the International Symposium
on Flying Insects and Robots (2007).

344

[112] Floreano, D., Husbands, P., and Nolfi, S. Evolutionary Robotics. In
Springer Handbook of Robotics, B. Siciliano and O. Khatib, Eds. Springer-
Verlag, Berlin, Germany, 2008.

[113] Floreano, D., and Keller, L. Evolution of Adaptive Behaviour in Robots
by Means of Darwinian Selection. PLoS Biology 8, 1 (2010), 1–8.

[114] Foch, R. SENDER - A Low Cost Airobotic Platform. In Proceedings of the
AUVSI 2006 conference (2006).

[115] Foch, R., and Ailinger, K. Low Reynolds Number Long Endurance Air-
plane Design. AIAA Paper No. 92-1263, American Institute of Aeronautics
and Astronautics, 1992.

[116] Foch, R., Dahlburg, J., McMains, J., Bovais, C., and Carruthers,
S. Dragon Eye, an Airborne Sensor System for Small Units. In Proceedings
of the Unmanned Systems conference (2000).

[117] Fogel, D. On the Philosophical Differences between Evolutionary Algo-
rithms and Genetic Algorithms. In Proceedings of the 2nd Annual Conference
on Evolutionary Programming (1993), pp. 23–29.

[118] Fogel, D., and Fogel, L. An Introduction to Evolutionary Programming.
In Proceedings of AE’95, Artificial Evolution: European Conference (1996).

[119] Fogel, D. B. Review of Computational Intelligence: Imitating Life. Pro-
ceedings of the IEEE 83, 11 (1995), 1588–1592.

[120] Fogel, L. J., Owens, A. J., and Walsh, M. J. Artificial Intelligence
through Simulated Evolution. John Wiley, New York, NY, USA, 1966.

[121] Forrest, S. Scaling Fitnesses in the Genetic Algorithm. Documentation
for PRISONERS DILEMMA and NORMS Programs that Use the Genetic
Algorithm (unpublished manuscript), 1985.

[122] Freed, M., Fitzgerald, W., and Harris, R. Intelligent Autonomous
Surveillance of Many Targets with Few UAVs. IEEE Transactions on Control
Systems Technology (2005).

[123] Freed, M., Harris, R., and Shafto, M. Human vs. Autonomous Control
of UAV Surveillance. In Proceedings of the American Institute of Aeronautics
and Astronautics (2004).

[124] Freeman, J., and Skapura, D. Neural Networks. Algorithms, Appli-
cations, and Programming Techniques. Computation and Neural Systems.
Addison-Wesley Publishing Company, Boston, MA, USA, 1991.

[125] Freeman, R., and Biro, D. Modelling Group Navigation: Dominance and
Democracy in Homing Pigeons. The Journal of Navigation, 62 (2009), 33–40.

[126] Frew, E., McGee, T., Kim, Z., Xiao, X., Jackson, S., Morimoto,
M., Rathinam, S., Padial, J., and Sengupta, R. Vision-Based Road-
Following Using a Small Autonomous Aircraft. In Proceedings of the 2004
IEEE Aerospace Conference (2004), pp. 3006–3015.

345

[127] Gacy, M., and Dahn, D. Commonality of Control Paradigms for Un-
manned Systems. In Proceedings of HRI’06, the 1st Annual Conference on
Human-Robot Interaction (2006), pp. 339–340.

[128] Gancet, J., Hattenberger, G., Alami, R., and Lacroix, S. Task
Planning and Control for a Multi-UAV System: Architecture and Algorithms.
In Proceedings of the IEEE International Conference on Intelligent Robots and
Systems (2005), pp. 1017–1022.

[129] Garfinkel, S. L., Juels, A., and Pappu, R. RFID Privacy: An Overview
of Problems and Proposed Solutions. IEEE Security & Privacy (2005), 34–43.

[130] Gaudiano, P., Bonabeau, E., and Shargel, B. Evolving Behaviors
for a Swarm of Unmanned Air Vehicles. In Proceedings of the IEEE Swarm
Intelligence Symposium (2005), pp. 317–324.

[131] Gautier, F. Evolving Neural Network Using Genetic Algorithm In A Prey-
Predator Scenario: Optimization By Threads. Master’s thesis, University of
Plymouth, Plymouth, UK, 2008.

[132] Gebre-Egziabher, D., Elkaim, G., Powell, J., and Parkinson, B.
A Gyro-Free Quaternion-Based Attitude Determination System Suitable for
Implementation Using Low Cost Sensors. In Proceedings of the 2000 IEEE
Position Location and Navigation Symposium (2000), pp. 185–192.

[133] Geyer-Schulz, A. Holland Classifier Systems. In Proceedings of APL
’95, the International Conference on Applied Programming Languages (1995),
pp. 43–55.

[134] Ghosh, C. Application of Unmanned Combat Aerial Vehicles in Future Bat-
tles of the Subcontinent. Strategic Analysis 25, 4 (2001), 599–611.

[135] Gibson, J. The Ecological Approach to Visual Perception. Houghton, Mifflin
and Company, Boston, MA, USA, 1979.

[136] Gilbert, E. Gray Codes and Paths on the n-Cube. The Bell System Technical
Journal (1958), 815–826.

[137] Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, Boston, MA, USA, 1989.

[138] Goldberg, D. E. Genetic and Evolutionary Algorithms Come of Age. Com-
munications of the ACM 37, 3 (1994), 113–119.

[139] Goldberg, D. E., and Deb, K. A Comparative Analysis of Selection
Schemes Used in Genetic Algorithms. In Foundations of Genetic Algorithms,
B. Spatz, Ed. Morgan Kaufmann Publishers, Inc., Burlington, MA, USA, 1991,
pp. 69–93.

[140] Gomez, F., and Miikkulainen, R. Incremental Evolution of Complex
General Behavior. Adaptive Behavior, 5 (1997), 317–342.

[141] Gomi, T., and Griffith, A. Evolutionary Robotics - An Overview. In
Proceedings of the 1996 IEEE International Conference on Evolutionary Com-
putation (1996), pp. 40–49.

346

[142] Gould, S. J. The Structure of Evolutionary Theory. Belknap Press, Cam-
bridge, MA, USA, 2002.

[143] Gould, S. J., and Eldredge, N. Punctuated Equilibria: the Tempo and
Mode of Evolution Reconsidered. Paleobiology 3, 2 (1977), 115–151.

[144] Granlund, G., Nordberg, K., Wilklund, J., Doherty, P., Skar-
man, E., and Sandewall, E. WITAS: An Intelligent Autonomous Aircraft
Using Active Vision. In Proceedings of the UAV 2000 International Technical
Conference and Exhibition (2000).

[145] Grasmeyer, J., and Keennon, M. Development of the Black Widow
Micro Air Vehicle. In Proceedings of the American Institute of Aeronautics
and Astronautics (2001), pp. AIAA Paper 2001–0127.

[146] Grefenstette, J. J. Optimization of Control Parameters for Genetic Al-
gorithms. IEEE Transactions on Systems, Man, and Cybernetics SMC-16, 1
(1986), 122–128.

[147] Gurney, K. An Introduction to Neural Networks. UCL Press, London, UK,
1997.

[148] Hancock, P. J. B. An Empirical Comparison of Selection Methods in Evolu-
tionary Algorithms. In Evolutionary Computing: AISB Workshop, T. Fogarty,
Ed. Springer-Verlag, Berlin, Germany, 1994.

[149] Harman, L., Shama, U., Dand, K., and Kidwell, B. Remote Sensing
and Spatial Information for Transportation Demand Management (TDM) As-
sessment. In Proceedings of Pecora 15/Land Satellite Information IV/ISPRS
Commission I/FIEOS 2002 Conference (2002).

[150] Hartman, C., and Benes, B. Autonomous Boids. Computer Animation
and Virtual Worlds 17 (2006), 199–206.

[151] Harvey, I. Artificial Evolution: A Continuing SAGA. In ER ’01: Proceedings
of the International Symposium on Evolutionary Robotics. From Intelligent
Robotics to Artificial Life (2001), vol. 2217, pp. 94–109.

[152] Harvey, I., Husbands, P., and Cliff, D. Issues in Evolutionary Robotics.
In From Animals to Animats 2. Proceedings of SAB92, the Second Interna-
tional Conference on Simulation of Adaptive Behavior (1993).

[153] Harvey, I., Husbands, P., and Cliff, D. Seeing the Light: Artificial
Evolution, Real Vision. In From Animals to Animats 3. Proceedings of SAB94,
the 3rd International Conference on Simulation of Adaptive Behaviour (1994),
pp. 392–401.

[154] Harvey, I., Husbands, P., Cliff, D., Thompson, A., and Jakobi,
N. Evolutionary Robotics: the Sussex Approach. Robotics and Autonomous
Systems 20 (1996), 205–224.

[155] Harvey, I., Paolo, E. D., Tuci, E., Wood, R., and Quinn, M. Evo-
lutionary Robotics: A New Scientific Tool for Studying Cognition. Artificial
Life 11, 1-2 (2005), 79–98.

347

[156] Hauert, S. Evolutionary Synthesis of Communication-based Aerial Swarms.
PhD thesis, EPFL, Lausanne, Switzerland, 2010.

[157] Hauert, S., Leven, S., Varga, M., Ruini, F., Cangelosi, A., Zuf-
ferey, J.-C., and Floreano, D. Reynolds Flocking in Reality with Fixed-
Wing Robots: Communication Range vs. Flight Dynamics. In Proceedings of
IROS 2011, the IEEE/RSJ International Conference on Intelligent Robots and
Systems (2011), pp. 5015–5020.

[158] Hauert, S., Leven, S., Zufferey, J.-C., and Floreano, D.
Communication-based Swarming for Flying Robots. In Proceedings of ICRA
2010, the IEEE International Conference on Robotics and Automation (2010).

[159] Hauert, S., Zufferey, J.-C., and Floreano, D. Evolved Swarming
without Positioning Information: an Application in Aerial Communication
Relay. Autonomous Robots 26, 1 (2009), 21–32.

[160] Hauert, S., Zufferey, J.-C., and Floreano, D. Reverse-Engineering of
Artificially Evolved Controllers for Swarms of Robots. In Proceedings of CEC
2009, the IEEE Congress on Evolutionary Computation (2009), pp. 55–61.

[161] Hebb, D. The Organization Of Behavior. Wiley & Sons, Hoboken, NJ, USA,
1949.

[162] Hermans, D., and Decuypere, R. A Challenge for Micro and Mini UAV:
The Sensor Problem. In Advanced Sensory Payloads for UAV, Meeting Pro-
ceedings RTO-MP-SET-092 (2005), pp. 13.1–13.8.

[163] Herwitz, S., Johnson, L., Arvesen, J., Higgins, R., Leung, J., and
Dunagan, S. Precision Agriculture as a Commercial Application for Solar-
Powered Unmanned Aerial Vehicles. In Proceedings of AIAA’s 1st Technical
Conference and Workshop on Unmanned Aerospace Vehicles, Systems, Tech-
nologies, and Operations (2002).

[164] Hing, J., and Oh, P. Development of an Unmanned Aerial Vehicle Piloting
System with Integrated Motion Cueing for Training and Pilot Evaluation.
Journal of Intelligent & Robotic Systems 54, 1-3 (2009), 3–19.

[165] Hodgins, J., and Brogan, D. Robot Herds: Group Behaviors for Systems
with Significant Dynamics. In Proceedings of ALIFE IV, the 4th International
Workshop on the Synthesis and Simulation of Living Systems (1994), pp. 319–
324.

[166] Holland, J. Adaptation in Natural and Artificial Systems. An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT
Press, Cambridge, MA, USA, 1992.

[167] Hopfield, J. Neural Networks and Physical Systems with Emergent Col-
lective Computational Abilities. In Proceedings of the National Academy of
Sciences (1982), vol. 79, pp. 2554–2558.

[168] Horan, B. The Statistical Character of Evolutionary Theory. Philosophy of
Science 61, 1 (1994), 76–95.

348

[169] How, J., King, E., and Kuwata, Y. Flight Demonstrations of Cooperative
Control for UAV Teams. In Proceedings of the AIAA 3rd Unmanned Unlimited
Technical Conference, Workshop and Exhibit (2004).

[170] Howard, R., and Kaminer, I. Survey of Unmanned Air Vehicles. In
Proceedings of the American Control Conference (1995), pp. 2950–2953.

[171] Hui, S., and Zak, S. The Widrow-Hoff Algorithm For McCulloch-Pitts
Type Neurons. IEEE Transactions on Neural Networks 5, 6 (1994), 924–929.

[172] Hundley, R., and Gritton, E. Future Technology-Driven Revolutions in
Military Operations. Results of a Workshop. RAND Documented Briefing No.
DB-1100ARPA, RAND Corporation, 1994.

[173] Husbands, P., and Harvey, I. Evolution versus Design: Controlling Au-
tonomous Robots. In Proceedings of the 3rd Annual Conference on Artificial
Intelligence, Simulation and Planning (1992), pp. 139–146.

[174] Hussain, T., Montana, D., and Vidaver, G. Evolution-Based Delib-
erative Planning for Cooperating Unmanned Ground Vehicles in a Dynamic
Environment. In Proceedings of GECCO 2004, the Genetic and Evolutionary
Computation Conference (2004), pp. 1185–1196.

[175] Ifju, P., Jenkins, D., Ettinger, S., Lian, Y., Shyy, W., and Waszak,
M. Flexible-Wing-Based Micro Air Vehicles. In Proceedings of the American
Institute of Aeronautics and Astronautics (2002).

[176] Ishii, K., Fujii, T., and Ura, T. Neural Network System for Online Con-
troller Adaptation and its Application to Underwater Robot. In Proceedings
of ICRA 1998, the IEEE International Conference on Robotics & Automation
(1998), pp. 756–761.

[177] Jacobs, O. L. R. Introduction to Control Theory. Oxford University Press,
Oxford, UK, 1993.

[178] Jager, R. Flight Test and Evaluation of the Piccolo II Autopilot System for
Use on a One-Third Scale Yak-54. Master’s thesis, Auburn University, AL,
USA, 2008.

[179] Jakobi, N. Minimal Simulations For Evolutionary Robotics. PhD thesis,
University of Sussex, UK, 1998.

[180] Jakobi, N., Husbands, P., and Harvey, I. Noise and the Reality Gap:
the Use of Simulation in Evolutionary Robotics. In Advances in Artificial
Life: Proceedings of the 3rd European Conference on Artificial Life (1995),
pp. 704–720.

[181] Jang, J., and Liccardo, D. Small UAV Automation Using MEMS. IEEE
A&E Systems Magazine (2007), 30–34.

[182] Jordan, M. Attractor Dynamics and Parallelism in a Connectionist Sequen-
tial Machine. In Proceedings of the Eighth Annual Conference of the Cognitive
Science Society (1986), pp. 531–546.

349

[183] Juan, L., Zixing, C., and Jianqin, L. Premature Convergence in Genetic
Algorithm: Analysis and Prevention Based on Chaos Operator. In Proceedings
of the 3rd World Congress on Intelligent Control and Automation (2000),
pp. 495–499.

[184] Kalman, R. E. A New Approach to Linear Filtering and Prediction Prob-
lems. Transactions of the ASME - Journal of Basic Engineering 82, Series D
(1960), 35–45.

[185] Kaplan, F., and Oudeyer, P.-Y. Trends in Epigenetic Robotics: At-
las 2006. In Proceedings of the Sixth International Workshop on Epigenetic
Robotics: Modeling Cognitive Development in Robotic Systems (2006).

[186] Kellog, J., Bovais, C., Dahlburg, J., Foch, R., Gardner, J., Gor-
don, D., Hartley, R., Kamgar-Parsi, B., McFarlane, H., Pipitone,
F., Ramamurti, R., Sciambi, A., Spears, W., Srull, D., and Sulli-
van, C. The NRL MITE Air Vehicle. In Proceedings of the 16th International
Conference on Unmanned Air Vehicle Systems (2001), pp. 25.1–25.14.

[187] Kenneth, P. The Evolution of the Cruise Missile. Air University Press,
Maxwell, AL, USA, 1985.

[188] Khatib, O. Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots. In Proceedings of ICRA 1985, the IEEE International Conference on
Robotics and Automation (1985), pp. 500–505.

[189] Kim, J.-H., Wishart, S., and Sukkarieh, S. Real-time Navigation,
Guidance, and Control of a UAV using Low-cost Sensors. In Proceedings of
FSR 2003, the International Conference on Field and Service Robotics (2003),
pp. 95–100.

[190] King, E., Kuwata, Y., Alighanbari, M., and Bertuccelli, L. J.
Coordination and Control Experiments on a Multi-vehicle Testbed. In Pro-
ceedings of the 2004 American Control Conference (2004), pp. 5315–5320.

[191] Kingston, D., and Beard, R. Real-Time Attitude and Position Estimation
for Small UAVs Using Low-Cost Sensors. In Proceedings of the AIAA 3rd
Unmanned Unlimited Systems Conference and Workshop (2004).

[192] Koestler, A., and Braunl, T. Mobile Robot Simulation with Realistic
Error Models. In Proceedings of the 2nd International Conference on Au-
tonomous Robots and Agents (2004), pp. 46–51.

[193] Kontitsis, M., Valavanis, K., and Tsourveloudis, N. A UAV Vision
System for Airborne Surveillance. In Proceedings of the 2004 IEEE Interna-
tional Conference on Robotics & Automation (2004), pp. 77–83.

[194] Koos, S., Mouret, J.-B., and Doncieux, S. Crossing the Reality Gap
in Evolutionary Robotics by Promoting Transferable Controllers. Proceed-
ings of GECCO ’12, the 12th annual Conference on Genetic and Evolutionary
Computation (2010), 119–126.

[195] Koza, J. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

350

[196] Koza, J. Genetic Programming II: Automatic Discovery of Reusable Pro-
grams. MIT Press, Cambridge, MA, USA, 1994.

[197] Koza, J. R., and Poli, R. Genetic Programming. In Search Methodologies,
E. K. Burke and G. Kendall, Eds. Springer US, New York, NY, USA, 2005,
pp. 127–164.

[198] Kube, C. R. Task Modelling in Collective Robotics. Autonomous Robots 4
(1997), 53–72. 10.1023/A:1008859119831.

[199] Kunz, H., and Hemelrjik, C. Artificial Fish Schools: Collective Effects of
School Size, Body Size and Body Form. Artificial Life 9, 3 (2003), 237–253.

[200] Kutschera, U., and Niklas, K. The Modern Theory of Biological Evolu-
tion: an Expanded Synthesis. Naturwissenschaften 91, 6 (2004), 255–276.

[201] Langton, C. Studying Artificial Life with Cellular Automata. Physica D:
Nonlinear Phenomena 22, 1 (1986), 120–149.

[202] Langton, C. Artificial life: An overview. MIT Press, Cambridge, MA, USA,
1997.

[203] Latchman, H., Wong, T., and Courage, K. Statement of Work for
Airborne Traffic Surveillance Systems. Proof of Concept Study for Florida
Department of Transportation, University of Florida, FL, USA, 2002.

[204] Lawrence, D., Donahue, R., Mohseni, K., and Han, R. Information
Energy for Sensor-Reactive UAV Flock Control. In Proceedings of the 3rd
AIAA “Unmanned Unlimited” Technical Conference, Workshop and Exhibit
(2004).

[205] Lax, M., and Sutherland, B. An Extended Role for Unmanned Aerial
Vehicles in the Royal Australian Air Force. Tech. Rep. Paper 46, Royal Aus-
tralian Air Force, Air Power Studies Centre, 1996.

[206] Lee, C. Fuzzy Logic in Control Systems: Fuzzy Logic Controller - Part I.
IEEE Transactions on Systems, Man, and Cybernetics 20, 2 (1990), 404–418.

[207] Lee, C. Fuzzy Logic in Control Systems: Fuzzy Logic Controller, Part II.
IEEE Transactions on Systems, Man, and Cybernetics 20, 2 (1990), 419–435.

[208] Lee, J., Huang, R., Vaughn, A., Xiao, X., Hedrick, J., Zennaro,
M., and Sengupta, R. Strategies of Path-Planning for a UAV to Track a
Ground Vehicle. In Proceedings of AINS 2003, Second Annual Symposium on
Autonomous Intelligent Networks and Systems (2003).

[209] Lee-Johnson, C., and Carnegie, D. Mobile Robot Navigation Modulated
by Artificial Emotions. IEEE Transaction on Systems, Man, and Cybernetics
40, 2 (2010), 469–480.

[210] Leven, S. Enabling Large-Scale Collective Systems in Outdoor Aerial
Robotics. PhD thesis, EPFL, Lausanne, Switzerland, 2011.

351

[211] Leven, S., Zufferey, J.-C., and Floreano, D. A Simple and Robust
Fixed-Wing Platform for Outdoor Flying Robot Experiments. In Proceedings
of the International Symposium on Flying Insects and Robots (2007), pp. 69–
70.

[212] Leven, S., Zufferey, J.-C., and Floreano, D. A Minimalist Control
Strategy for Small UAVs. In Proceedings of IROS 2009, the IEEE/RSJ Inter-
national Conference on Intelligent RObots and Systems (2009), pp. 2873–2878.

[213] Leven, S., Zufferey, J.-C., and Floreano, D. Dealing with Midair
Collisions in Dense Collective Aerial Systems. Journal of Field Robotics 28, 3
(2011), 405–423.

[214] Lewis, F., Jagannathan, S., and Yesildirek, A. Neural Network Con-
trol of Robot Manipulators and Nonlinear Systems. London, UK. Taylor &
Francis, 1999.

[215] Lima, J., Gracias, N., Pereira, H., and Rosa, A. Fitness Function
Design for Genetic Algorithms in Cost Evaluation Based Problems. In Pro-
ceedings of the 19996 IEEE International Conference on Evolutionary Com-
putation (2002), pp. 207–212.

[216] Lin, P.-H., and Lee, C.-S. The Eyewall-Penetration Reconnaissance
Observation of Typhoon Longwang (2005) with Unmanned Aerial Vehicle,
Aerosonde. Journal of Atmospheric and Oceanic Technology 25, 1 (2008),
15–25.

[217] Lin, P.-H., Lee, C.-S., Yen, T.-C., and Lee, H.-C. Fly into Typhoon
Hayan with UAV Aerosonde. In Proceedings of the 2000 American Meteoro-
logical Society Conference (2000), vol. 52113.

[218] Lindgren, K. Evolutionary Phenomena in Simple Dynamics. In Artificial
Life II, C. Langton, C. Taylor, D. Farmer, and S. Rasmussen, Eds. Addison-
Wesley, Boston, MA, USA, 1991, pp. 295–312.

[219] Lipson, J. Evolutionary Robotics: Emergence of Communication. Current
Biology 17, 9 (2007), R330–R332.

[220] Lobb, A., and Bangay, S. Realistic Autonomous Fish for Virtual Real-
ity. In Proceedings of AFRIGRAPH ’03, the 2nd International Conference on
Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa
(2002), pp. 167–170.

[221] Loch, C., and Huberman, B. A Punctuated-Equilibrium Model of Tech-
nology Diffusion. Management Science 45, 2 (1999), 160–177.

[222] Loh, R., Bian, Y., and Roe, T. UAVs in Civil Airspace: Safety Re-
quirements. IEEE Aerospace and Electronic Systems Magazine 24, 1 (2009),
5–17.

[223] Lovtrup, S. The Four Theories of Evolution. Epilogue. Rivista di Biologia
/ Biology Forum, 92 (1982), 478–480.

352

[224] Lund, H. H., and Miglino, O. From Simulated to Real Robots. In Proceed-
ings of the 1996 IEEE International Conference on Evolutionary Computation
(1996), pp. 362–365.

[225] Lyon, D. A Military Perspective on Small Unmanned Aerial Vehicles. IEEE
Instrumentation & Measurement Magazine, September (2004), 27–31.

[226] Malthus, T. An Essay on the Principle of Population. An Essay on the
Principle of Population, as it Affects the Future Improvement of Society with
Remarks on the Speculations of Mr. Godwin, M. Condorcet, and Other Writ-
ers. J. Johnson, London, UK, 1798.

[227] Manai, M., Desbiens, A., and Gagnon, E. Identification of a UAV and
Design of a Hardware-in-the-Loop System for Nonlinear Control Purposes. In
Proceedings of the 2005 AIAA Guidance, Navigation, and Control Conference
and Exhibit (2005).

[228] Mark, A., Polani, D., and Uthmann, T. A Framework for Sensor Evo-
lution in a Population of Braitenberg Vehicle-like Agents. In Artificial Life
VI: Proceedings of the Sixth International Conference on Artificial Life (1998),
pp. 428–432.

[229] Marocco, D. Intelligenza Artificiale. Introduzione ai nuovi modelli. Bo-
nanno Editore, Acireale, Italy, 2006.

[230] Marocco, D., Cangelosi, A., and Nolfi, S. The Emergence of Commu-
nication in Evolutionary Robots. Philosophical transactions Series A, Mathe-
matical, physical, and engineering sciences 361, 1811 (2003), 2397–2421.

[231] Maroney, D., Bolling, R., Heffron, M., and Flathers, G. Experi-
mental Platforms for Evaluating Sensor Technology for UAS Collision Avoid-
ance. In Proceedings of the 26th Digital Avionics Systems Conference (2007),
pp. 5.C.1–1 – 5.C.1–9.

[232] Mataric, M. Issues and Approaches in Design of Collective Autonomous
Agents. Robotics and Autonomous Systems 16 (1994), 321–331.

[233] Mataric, M. The Robotics Primer. MIT Press, Cambridge, MA, USA, 2007.

[234] Maza, I., Caballero, F., Molina, R., Pena, N., and Oliero, A.
Multimodal Interface Technologies for UAV Ground Control Stations. Journal
of Intelligent & Robotic Systems 57, 1-4 (2010).

[235] McCarley, J., and Wickens, C. Human Factors Concerns in UAV flight.
http://www.hf.faa.gov/docs/508/docs/uavFY04Planrpt.pdf, 2004.

[236] McCarthy, J. Artificial Intelligence, Logic and Formalizing Common Sense.
Philosophical Logic and Artificial Intelligence (1989), 161–189.

[237] McClelland, J. Explorations in Parallel Distributed Processing: A Hand-
book of Models, Programs, and Exercises, 2nd ed. http://www.stanford.edu/

group/pdplab/pdphandbook/, 2011.

353

[238] McCormack, E. The Use of Small Unmanned Aircraft by the Washington
State Department of Transportations. TRAC Research Report - Agreement
T4118, Task 04, Unmanned Aerial Vehicles, Washington State Transportation
Center (TRAC), Washington, WA, USA, 2008.

[239] McCulloch, W., and Pitts, W. A Logical Calculus of the Ideas Immanent
in Nervous Activity. Bulletin of Mathematical Biophysics 5 (1943), 115–133.

[240] McGeer, T. LAIMA: The first Atlantic Crossing by Unmanned Aircraft.
http://www.aerovelco.com/papers/LaimaStory.pdf, 1999.

[241] McLain, T. Coordinated Control of Unmanned Air Vehicles. Tech. rep.,
Wright-Patterson Air Force Base, OH, USA, 1999.

[242] McLean, D. Automatic Flight Control Systems. Prentice Hall, Upper Saddle
River, NJ, USA, 1990.

[243] Medler, D. A Brief History of Connectionism. Neural Computing Surveys,
1 (1998), 61–101.

[244] Melhuish, C., Welsby, J., and Greenway, P. Gradient Ascent with
a group of Minimalist Real Robots: Implementing Secondary Swarming. In
Proceedings of the IEEE International Conference on Systems, Man and Cy-
bernetics (2002), vol. 2, pp. 509–514.

[245] Mendes, M. D. B. 45 years of evolution strategies: Hans-
Paul Schwefel interviewed for the genetic argonaut blog. http:

//delivery.acm.org/10.1145/1820000/1810133/p2-mendes.pdf?ip=141.

163.186.62&acc=ACTIVE%20SERVICE&CFID=53031044&CFTOKEN=85679215&__acm_

_=1320944646_f3279097809eef76c43911bb8f37e247, 2009.

[246] Merino, L., Caballero, F., de Dios, J. M., Ferruz, J., and Ollero,
A. A Cooperative Perception System for Multiple UAVs: Application to
Automatic Detection of Forest Fires. Journal of Field Robotics 23, 3-4 (2006),
165–184.

[247] Metni, N., and Hamel, T. A UAV for Bridge Inspection: Visual Servoing
Control Law with Orientation Limits. Automation in Construction 17 (2007),
3–10.

[248] Metz, C. Use of Fiber Optic Data Links in Marine Corps Unmanned Vehicle.
Unmanned Systems 6, 4 (1988), 13–17.

[249] Michelson, R. The Entomopter. In Neurotechnology for Biomimetic Robots,
J. Ayers, J. Davis, and A. Rudolph, Eds. MIT Press, Cambridge, MA, USA,
2002, pp. 481–509.

[250] Michelson, R. Novel Approaches to Miniature Flight Platforms. In Proceed-
ings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace
Engineering (2004), vol. 18, pp. 363–373.

[251] Michelson, R. Test and Evaluation of Fully Autonomous Micro Air Vehicles.
ITEA Journal, 29 (2008), 367–374.

354

[252] Michelson, R. Overview of Micro Air Vehicle System Design and Integration
Issues. In Encyclopedia of Aerospace Engineering, R. Blockley and W. Shyy,
Eds. John Wiley & Sons, New York, NY, USA, 2010.

[253] Miglino, O., Lund, H., and Nolfi, S. Evolving Mobile Robots in Simu-
lated and Real Environments. Artificial Life 2, 4 (1995), 417–434.

[254] Miller, J., Minear, P., Niessner, A., DeLullo, A., Geiger, B.,
Long, L., and Horn, J. Intelligent Unmanned Air Vehicle Flight Systems.
In Proceedings of the 2005 AIAA InfoTech@Aerospace Conference (2005).

[255] Minsky, M., and Papert, S. Perceptrons: An Introduction to Computa-
tional Geometry, 2nd ed. MIT Press, Cambridge, MA, USA, 1972.

[256] Mirolli, M., and Parisi, D. Talking to Oneself as a Selective Pressure for
the Emergence of Language. In The Evolution of Language: Proceedings of the
6th International Conference on the Evolution of Language (2006), pp. 214–
221.

[257] Mitchell, M. An Introduction to Genetic Algorithms. MIT Press, Cam-
bridge, MA, USA, 1998.

[258] Mitchell, M., Forrest, S., and Holland, J. The Royal Road for Ge-
netic Algorithms: Fitness Landscapes and GA Performance. In Towards a
Practice of Autonomous Systems: Proceedings of the First European Confer-
ence on Artificial Life (1992), pp. 242–254.

[259] Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klap-
tocz, A., Magnenat, S., Zufferey, J.-C., Floreano, D., and Mar-
tinoli, A. The e-puck, a Robot Designed for Education in Engineering. In
Proceedings of the 9th Conference on Autonomous Robot Systems and Com-
petitions (2009), pp. 59–65.

[260] Mondada, F., Franzi, E., and Guignard, A. The Development of Khep-
era. In Proceedings of the 1st International Khepera workshop (1999), pp. 7–13.

[261] Montambault, S., Beaudry, J., Toussaint, K., and Pouliout, N. On
the Application of VTOL UAVs to the Inspections of Power Utility Assets.
In Proceedings of the 1st International Conference on Applied Robotics for the
Power Industry (2010).

[262] Montana, D., and Davis, L. Training Feedforward Neural Networks Using
Genetic Algorithms. In Proceedings of IJCAI’89, the 11th international joint
conference on Artificial intelligence (1989).

[263] Moore, F. A Methodology for Missile Countermeasures Optimization under
Uncertainty. Evolutionary Computation 10, 2 (2002), 129–149.

[264] Mouret, J.-B., and Doncieux, S. Overcoming the Bootstrap Problem
in Evolutionary Robotics Using Behavioral Diversity. In Proceedings of CEC
’09, the IEEE Congress on Evolutionary Computation (2009), pp. 1161–1168.

[265] Mouret, J.-B., Doncieux, S., and Meyer, J.-A. Incremental Evolution
of Target-Following Neuro-controllers for Flapping-Wing Animats. In From
Animals to Animats 9. Proceedings of SAB 2006, the 9th International Con-
ference on Simulation of Adaptive Behavior (2006), pp. 606–618.

355

[266] Mueller, T. Aerodynamic Measurements at Low Reynolds Numbers for
Fixed Wing Micro-Air Vehicles. Tech. rep., University of Notre Dame, Notre
Dame, IN, USA, 1999.

[267] Mueller, T. On the Birth of Micro Air Vehicles. International Journal of
Micro Air Vehicles 1, 1 (2009), 1–12.

[268] Mueller, T., and DeLaurier, D. Aerodynamics of Small Vehicles. An-
nual Review of Fluid Mechanics 35 (2003), 89–111.

[269] Muhlenbein, H. Evolution in Time and Space - The Parallel Genetic Algo-
rithm. In Foundations of Genetic Algorithms (1991), pp. 316–337.

[270] Mullens, K., Pacis, E., Stancliff, S., Burmeister, A., Denewiller,
T., Bruch, M., and Everett, H. An Automated UAV Mission System.
In Proceedings of USIS 03, the AUVSI conference on Unmanned Systems in
International Security (2003).

[271] Mullin, J. Tier II UAV. http://hqinet001.hqmc.usmc.mil/pp&o/pog/

GCE_Conf_Briefs/1-05/UAV%2520Tier%2520II%2520Brief%2520to%2520GCE%

2520Conf%2520-%252022%2520Apr%252005.ppt, 2005.

[272] Murphy, D., Bott, J., Bryan, W., Coleman, J., Gage, D., Nguyen,
H., and Cheatham, M. MSSMP: No Place to Hide. In Proceedings of the
AUVSI’97 Conference (1997).

[273] Murray, P. So What’s New About Complexity? The Journal of Systems
Research and Behavioral Science 20, 5 (2003), 409–417.

[274] Nagy, M., Akos, Z., Biro, D., and Vicsek, T. Hierarchical Group
Dynamics in Pigeon Flocks. Nature 464, 7290 (2010), 890–893.

[275] Negenborn, R. Robot Localization and Kalman Filters. On finding your
position in a noisy world. PhD thesis, Utrecht University, The Netherlands,
2003.

[276] Nelson, A. L., Barlow, G. J., and Doitsidis, L. Fitness Functions
in Evolutionary Robotics: A Survey and Analysis. Robotics and Autonomous
Systems 57, 4 (2009), 345–370.

[277] Nelson, A. L., Grant, E., Galeotti, J. M., and Rhody, S. Maze Ex-
ploration Behaviors Using an Integrated Evolutionary Robotics Environment.
Robotics and Autonomous Systems 46, 3 (2004), 159–173.

[278] Nillson, N. Shakey the Robot. SRI International - Technical Note 323,
Stanford Research Institute, Stanford, CA, USA, 1984.

[279] Nitschke, G. Emergence of Cooperation: State of the Art. Artificial Life
11, 3 (2005).

[280] Nolfi, S., and Floreano, D. Evolutionary Robotics. The Biology, In-
telligence, and Technology of Self-Organizing Machines, 2nd ed. MIT Press,
Cambridge, MA, USA, 2001.

356

[281] Nolfi, S., Floreano, D., Miglino, O., and Mondada, F. How to
Evolve Autonomous Robots: Different Approaches in Evolutionary Robotics.
In Artificial Life IV. Proceedings of the Fourth International Workshop on the
Synthesis and Simulation of Living Systems (1994), pp. 190–197.

[282] Nolfi, S., and Parisi, D. Exploiting the Power of Sensory-Motor Coordi-
nation. In Proceedings of ECAL’99, the 5th European Conference on Advances
in Artificial Life (1999), pp. 173–182.

[283] Ollero, A., and Merino, L. Control and Perception Techniques for Aerial
Robotics. Annual Reviews in Control 28 (2004), 167–178.

[284] Padfield, G., and Lawrence, B. The Birth of Flight Control: An En-
gineering Analysis of the Wright Brothers’ 1902 Glider. The Aeronautical
Journal, December (2003), 697–718.

[285] Pagello, E., D’Angelo, A., Montesello, F., Garelli, F., and Fer-
rari, C. Cooperative Behaviors in Multi-Robot Systems through Implicit
Communication. Robotics and Autonomous Systems 29 (1999), 65–77.

[286] Palmer, R., Arthur, W., Holland, J., LeBaron, B., and Tayler,
P. Artificial Economic Life: A Simple Model of a Stockmarket. Physica D:
Nonlinear Phenomena 75, 1-3 (1994), 264–274.

[287] Pamphile, T., and Lin, K.-C. Behavior-Based Control Hierarchy of Un-
manned Aerial Vehicle Swarming. In Proceedings of CTS 2006, the Interna-
tional Symposium on Collaborative Technologies and Systems (2006), pp. 349–
355.

[288] Parisi, D. Mente: i nuovi modelli della Vita Artificiale. Il Mulino, Bologna,
Italy, 1999.

[289] Pashilkar, A., Sundararajan, N., and Saratchandran, P. A Fault-
Tolerant Neural Aided Controller for Aircraft Auto-Landing. Aerospace Sci-
ence and Technology, 10 (2006), 49–61.

[290] Patcher, M., and Chandler, P. Challenges of Autonomous Control.
IEEE Control Systems (1998), 92–97.

[291] Patterson, M., Mulligan, A., Robinson, D., Wardell, L., and Pal-
lister, J. Volcano Surveillance by ACR Silver Fox. In Proceedings of the
American Institute of Aeronautics and Astronautics (2005).

[292] Pavlov, I. Conditioned Reflexes: An Investigation of the Physiological Ac-
tivity of the Cerebral Cortex. Oxford University Press, Oxford, UK, 1927.

[293] Peniak, M., Bentley, B., Marocco, D., Cangelosi, A., Ampatzis,
C., Izzo, D., and Biscani, F. An Evolutionary Approach to Designing
Autonomous Planetary Rovers. In Proceedings of TAROS 2010, the 11th Con-
ference Towards Autonomous Robotic Systems (2010), pp. 198–204.

[294] Perlovsky, L. Neural Networks and Intellect: using model based concepts.
Oxford University Press, Oxford, UK, 2001.

357

[295] Petrovic, P. Overview of Incremental Approaches to Evolutionary Robotics.
In Proceedings of the 1999 Norwegian Conference on Computer Science (1999),
pp. 151–162.

[296] Petrovic, P. A Step towards Incremental On-Board Evolutionary Robotics.
In Proceedings of SCAI’01, the Seventh Scandinavian Conference on Artificial
Intelligence (2001), pp. 3–12.

[297] Pfeifer, R., and Scheier, C. Understanding intelligence. MIT Press
Cambridge, MA, USA, 1999.

[298] Pirjanian, P., and Mataric, M. Multi-Robot Target Acquisition Using
Multiple Objective Behavior Coordination. In Proceedings of ICRA 2000, the
IEEE International Conference on Robotics and Automation (2000), vol. 3,
pp. 2696–2702.

[299] Purcell, E. Life at low Reynolds number. American Journal of Physics 45,
1 (1977), 3–11.

[300] Puri, A. A Survey of Unmanned Aerial Vehicles (UAVs) for Traffic Surveil-
lance. Tech. rep., University of South Florida, Tampa, FL, USA, 2005.

[301] Qu, Y.-H., Pan, Q., and Yan, J.-G. Flight Path Planning of UAV
Based on Heuristically Search and Genetic Algorithms. In Proceedings of
IECON 2005, the 31st Annual Conference of IEEE Industrial Electronics So-
ciety (2005), pp. 45–49.

[302] Quigley, M., Goodrich, M., and Beard, R. Semi-Autonomous Human-
UAV Interfaces for Fixed-Wing Mini-UAVs. In Proceedings of ICIRS 2004,
the IEEE/RSJ International Conference on Intelligent Robots and Systems
(2004), pp. 2457–2462.

[303] Quigley, M., Goodrich, M., Griffiths, S., Eldredge, A., and
Beard, R. Target Acquisition, Localization, and Surveillance Using a Fixed-
Wing Mini-UAV and Gimbaled Camera. In Proceedings of ICRA 2005, the
IEEE International Conference on Robotics and Automation (2005), pp. 2600–
2605.

[304] Rango, A., Laliberte, A., Steele, C., Herrick, J., Bestelmeyer,
B., Schmugge, T., Roanhorse, A., and Jenkins, V. Using Unmanned
Aerial Vehicles for Rangelands: Current Applications and Future Potentials.
Environmental Practice 8 (2006), 159–168.

[305] Rathbun, D., Kragelund, S., Pongpunwattana, A., and Capozzi,
B. An Evolution Based Path Planning Algorithm for Autonomous Motion of
a UAV through Uncertain Environments. In Proceedings of the AIAA Digital
Avionics Systems Conference (2002), pp. 608–619.

[306] Rathinam, S., Zennaro, M., Mak, T., and Sengupta, R. An Archi-
tecture for UAV Team Control. In Proceedings of IAV 2004, the 5th IFAC
Symposium on Intelligent Autonomous Vehicles (2004), pp. 1721–1728.

[307] Ray, T. An Evolutionary Approach to Synthetic Biology: Zen and the Art
of Creating Life. Artificial Life 1, 1/2 (1994), 195–226.

358

[308] Rechenberg, I. Cybernetic Solution Path of an Experimental Problem.
In Evolutionary Computation. The Fossil Record, D. Fogel, Ed. IEEE Press,
Piscataway, NJ, USA, 1965.

[309] Rechenberg, I. Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Fromman-Holzboog, Stuttgart, Ger-
many, 1973.

[310] Reil, T., and Husbands, P. Evolution of Central Pattern Generators for
Bipedal Walking in a Real-Time Physics Environment. IEEE Transactions on
Evolutionary Computation 6, 2 (2002), 159–168.

[311] Reynolds, C. Flocks, Herds, and Schools: A Distributed Behavioral Model.
In Proceedings of ACM SIGGRAPH ’87 (1987), vol. 21, pp. 25–34.

[312] Reynolds, C. Steering Behaviors for Autonomous Characters. In Proceedings
of the Game Developers Conference (1999), pp. 763–782.

[313] Richards, M., Whitley, D., and Beveridge, J. Evolving Cooperative
Strategies for UAV Teams. In Proceedings of GECCO 2005, Genetic and
Evolutionary Computation Conference (2005), pp. 332–339.

[314] Rocha, M., and Neves, J. Preventing Premature Convergence to Local
Optima in Genetic Algorithms via Random Offspring Generation. Lecture
Notes in Computer Science 1611 (1999), 127–136.

[315] Romeo, G., Frulla, G., and Cestino, E. Design of a High-Altitude
Long-Endurance Solar-Powered Unmanned Air Vehicle for Multi-Payload and
Operations. In Proceedings of the Institution of Mechanical Engineers, Part
G: Journal of Aerospace Engineering (2007), vol. 221, pp. 199–216.

[316] Rosenblatt, F. The Perceptron: a Probabilistic Model for Information
Storage and Organization in the Brain. Psychological Review 65, 6 (1958),
386–408.

[317] Rosenblatt, F. Perceptron Simulation Experiments. In Proceedings of the
IRE (1960), pp. 301–309.

[318] Rosenblatt, F. Principles of Neurodynamics: Perceptrons and the Theory
of Brain Mechanisms, vol. 115. Spartan Books, Washington, WA, USA, 1962.

[319] Ruini, F., and Cangelosi, A. Distributed Control in Multi-Agent Sys-
tems: A Preliminary Model of Autonomous MAV Swarms. In Proceedings of
FUSION 2008, the International Conference on Information Fusion (2008),
pp. 1043–1050.

[320] Ruini, F., and Cangelosi, A. Evolutionary Algorithm Based Neural Net-
work Controllers: an Application to MAV Swarms. In Proceedings of WIVACE
2008, Italian Conference on Artificial Life and Evolutionary Computation
(2008).

[321] Ruini, F., and Cangelosi, A. Extending the Evolutionary Robotics Ap-
proach to Flying Machines: An Application to MAV Teams. Neural Networks,
22 (2009), 812–821.

359

[322] Ruini, F., and Cangelosi, A. Un Modello 3D di Robotica Evolutiva per
lo Sviluppo di Controller Autonomi per Robot Volanti. In Modelli, Sistemi e
Applicazioni di Vita Artificiale e Computazione Evolutiva. Atti del VI Work-
shop Italiano di Vita Artificiale e Computazione Evolutiva (WIVACE 2009)
(Naples, Italy, 2009), O. Miglino, M. Ponticorvo, A. Rega, and F. Rubinacci,
Eds., FEU - Fridericiana Edizioni Universitarie, pp. 177–185.

[323] Ruini, F., and Cangelosi, A. An Evolutionary Robotics 3D Model for
Autonomous MAVs Navigation, Target Tracking and Group Coordination.
In Proceedings of IJCNN 2010, the International Joint Conference on Neural
Networks (2010), pp. 760–767.

[324] Ruini, F., and Cangelosi, A. An Incremental Approach to the Evolution-
ary Design of Autonomous Controllers for Micro-unmanned Aerial Vehicles.
In Proceedings of TAROS 2010, the 11th Conference Towards Autonomous
Robotic Systems (2010), pp. 239–246.

[325] Ruini, F., and Cangelosi, A. Intelligent Autonomous Controllers Based
on Genetically Evolved Neural Networks for Flying Robots: Experiments in
Two and Three Dimensions. In Proceedings of PCCAT 2010, the Postgraduate
Conference for Computing: Application and Theory (2010).

[326] Ruini, F., Cangelosi, A., and Zetule, F. Individual and Cooperative
Tasks Performed by Autonomous MAV Teams Driven by Embodied Neural
Network Controllers. In Proceedings of IJCNN 2009, the International Joint
Conference on Neural Networks (2009), pp. 2717–2724.

[327] Ruini, F., Petrosino, G., Saglimbeni, F., and Parisi, D. The Strategic
Level and the Tactical Level of Behaviour. In Advances in Cognitive Systems,
J. Gray and S. Nefti-Meziani, Eds. IET Publisher, Herts, UK, 2010, pp. 271–
299.

[328] Rumelhart, D., Hinton, G., and Williams, R. Learning Representa-
tions by Back-Propagating Errors. Nature 323 (1986), 533–536.

[329] Rundle, J., Klein, W., and Turcotte, D., Eds. Reduction and Pre-
dictability of Natural Disasters. Santa Fe Institute Series. Westview Press,
Boulder, CO, 1996.

[330] Ryan, A., Xiao, X., Rahinam, S., Tisdale, J., Zennaro, M.,
Caveney, D., Sengupta, R., and Hedrick, J. A Modular Software
Infrastructure for Distributed Control of Collaborating UAVs. In Proceedings
of the AIAA Conference on Guidance, Navigation, and Control (2006).

[331] Salomon, R. Evolving and Optimizing Braitenberg Vehicles by Means of
Evolution Strategies. International Journal of Smart Engineering Systems
Design 2 (1999), 69–77.

[332] Sandini, G., Metta, G., and Vernon, D. RobotCub: An Open
Framework for Research in Embodied Cognition. In Proceedings of the 4th
IEEE/RAS International Conference on Humanoid robots (2004), pp. 13–32.

[333] Sandini, G., Metta, G., and Vernon, D. The iCub Cognitive Humanoid
Robot: an Open-System Research Platform for Enactive Cognition. Lectures
Notes in Computer Science 4850 (2007), 358–369.

360

[334] Schaffer, J., Whitley, D., and Eshelman, L. Combinations of Ge-
netic Algorithms and Neural Networks: a Survey of the State of the Art. In
Proceedings of COGANN-92, the International Workshop on Combinations of
Genetic Algorithms and Neural Networks (1992).

[335] Schaffer, J. D., Caruana, R. A., Eshelman, L. J., and Das, R. A
Study of Control Parameters Affecting Online Performance of Genetic Algo-
rithms for Function Optimization. In Proceedings of the Third International
Conference on Genetic Algorithms (Burlington, MA, USA, 1989), Morgan
Kaufmann Publishers, Inc., pp. 51–60.

[336] Scheck, W. Lawrence Sperry: Genius on Autopilot. Aviation History Mag-
azine (November 2004).

[337] Scherer, S., Singh, S., Chamberlain, L., and Elgersma, M. Fly-
ing Fast and Low Among Obstacles: Methodology and Experiments. The
International Journal of Robotics Research 27, 5 (2008), 549–574.

[338] Schlect, J., Altenburg, K., Ahmed, B., and Nygard, K. Decen-
tralized Search by Unmanned Air Vehicles using Local Communication. In
Proceedings of IC-AI 2003, the International Conference on Artificial Intelli-
gence (2003), pp. 757–762.

[339] Schlesinger, M., and Parisi, D. The Agent-Based Approach: A New
Direction for Computational Models of Development. Developmental Review
21, 1 (2001), 121–146.

[340] Schlesinger, M., and Parisi, D. Connectionism in an Artificial Life
Perspective: Simulating Motor, Cognitive, and Language Development. In
Neuroconstructivism: Perspectives and Prospects, D. Mareschal, S. Sirois, and
G. Westermann, Eds. Oxford University Press, Oxford, UK, 2007.

[341] Schwefel, H. Numerische Optimierung von Computer-Modellen Mittels der
Evolutionsstrategie. Birkhäuser Basel, Stuttgart, Germany, 1977.

[342] Schwefel, H. P. Evolutionsstrategie und Numerische Optimierung. PhD
thesis, Technical University of Berlin, Berlin, Germany, 1975.

[343] Serra, R., Carletti, T., and Poli, I. Synchronization Phenomena in
Surface-Reaction Models of Protocells. Artificial Life 13, 2 (2007), 123–138.

[344] Servan-Schreiber, D., Cleeremans, A., and McClelland, J. Graded
State Machines: The Representation of Temporal Contingencies in Simple
Recurrent Networks. Machine Learning, 7 (1991), 161–193.

[345] Sharkey, N. Automated Killers and the Computing Profession. IEEE Com-
puter (Nov. 2007), 122–124.

[346] Sharkey, N. Grounds for Discrimination: Autonomous Robot Weapons.
RUSI Defence Systems (Oct. 2008), 86–89.

[347] Sharkey, N. Weapons of Indiscriminate Lethality. FIfF-Kommunikation, 1
(2009), 26–29.

361

[348] Sharkey, N. Saying ‘No!’ to Lethal Autonomous Targeting. Journal of
Military Ethics 9, 4 (2010), 369–383.

[349] Shumaker, J., Ali, K., and Carter, L. A Gimbaled Platform for MAV
Autopilot Simulation and Calibration. In Proceedings of DASC 2008, the 27th
IEEE/AIAA Digital Avionics Systems Conference (2008), vol. 4.C4-1–4.C.4-
10.

[350] Sinsley, G., Miller, J., Long, L., Geiger, B., Niessner, A., and
Horn, J. An Intelligent Controller for Collaborative Unmanned Air Vehi-
cles. In Proceedings of CISDA 2007, the IEEE Symposium on Computational
Intelligence in Security and Defense Applications (2007), pp. 139–144.

[351] Song, Y.-E., and Yoon, K.-J. Development of a Small Air Robot with
Fixed Wing and Semi-Autopilot System. In Proceedings of the 2007 IEEE
International Conference on Robotics and Biomimetics (2007), pp. 1821–1826.

[352] Sparrow, R. Killer Robots. Journal of Applied Philosophy 24, 1 (2007),
62–77.

[353] Spencer, H. The Principles of Biology. D. Appleton and Company, New
York, NY, USA, 1898.

[354] Srinivas, M., and Patnaik, L. Genetic Algorithms: a Survey. Computer
27, 6 (1994), 17–26.

[355] Stanley, K., and Miikkulainen, R. Evolving Neural Networks through
Augmenting Topologies. Evolutionary Computation 10, 2 (2002), 99–127.

[356] Steele Jr., G. L. Common LISP. The Language, 2nd ed. Digital Press,
Bournemouth, UK, 1990.

[357] Steels, L. The Artificial Life Roots of Artificial Intelligence. Artificial Life
Journal 1, 1-2 (1994), 75–110.

[358] Sullivan, J. Impediments to and Incentives for Automation in the Air Force.
In Proceedings of the ISTAS 2005, the International Symposium on Technology
and Society. Weapons and Wires: Prevention and Safety in a Time of Fear
(2005), pp. 102–110.

[359] Sullivan, J. Evolution or Revolution? The Rise of UAVs. IEEE Technology
and Society Magazine 25, 3 (2006), 43–49.

[360] Sun, D., Wu, H., Zhu, R., and Hung, L. Development of Micro Air
Vehicle Based on Aerodynamic Modeling Analysis in Tunnel Tests. In Pro-
cedings of ICRA 2005, the IEEE International Conference on Robotics and
Automation (2005), pp. 2235–2240.

[361] Taha, Z., Tang, Y., and Yap, K. Development of an Onboard System for
Flight Data Collection of a Small-Scale UAV Helicopter. Mechatronics 21, 1
(2011), 132–144.

[362] Tennekes, H. The Simple Science of Flight: from Insects to Jumbo Jets.
MIT Press, Cambridge, MA, USA, 2009.

362

[363] Theodore, C., and Tischler, M. Precision Autonomous Landing Adap-
tive Control Experiment (PALACE). In Proceedings of the 25th Army Science
Conference, “Transformational Army Science and Technology - Charting the
Future of S&T for the Soldier” (2006).

[364] Tikhanoff, V. Development of Cognitive Capabilities in Humanoid Robots.
PhD thesis, University of Plymouth, UK, 2009.

[365] Togelius, J. Evolution of a Subsumption Architecture Neurocontroller.
Journal of Intelligent and Fuzzy Systems 15, 1 (2004), 15–20.

[366] Togelius, J., and Lucas, S. M. Evolving Controllers for Simulated Car
Racing. In Proceedings of the 2005 IEEE Congress on Evolutionary Compu-
tation (2005), vol. 2, pp. 1906–1913.

[367] Togelius, J., and Lucas, S. M. Evolving Robust and Specialized Car
Racing Skills. In Proceedings of the 2006 IEEE International Congress on
Evolutionary Computation (2006), pp. 1187–1194.

[368] Tomko, N., and Harvey, I. Do Not Disturb: Recommendations for In-
cremental Evolution. In Proceedings of ALIFE XII, the 12th International
Conference on the Synthesis and Simulation of Living Systems (2010).

[369] Trianni, V., Nolfi, S., and Dorigo, M. Evolution, Self-organization
and Swarm Robotics. In Swarm Intelligence, C. Blum and D. Merkle, Eds.,
Natural Computing Series. Springer-Berlag Berlin, Heideberg, Germany, 2008,
pp. 163–191.

[370] Tu, H., and Du, X. The Design of Small UAV Autopilot Hardware System
Based on DSP. In Proceedings of the 2010 IEEE International Conference on
Intelligent Computation Technology and Automation (2010), pp. 780–783.

[371] Tuci, E., Quinn, M., and Harvey, I. An Evolutionary Ecological Ap-
proach to the Study of Learning Behavior Using a Robot-Based Model. Adap-
tive Behavior 10, 3-4 (2002), 201–221.

[372] Turing, A. Computing Machinery and Intelligence. Mind 59 (1950), 433–
460.

[373] Urzelai, J., and Floreano, D. Incremental Evolution with Minimal Re-
sources. In Proceedings of IKW’99, the First International Khephera Workshop
(1999), pp. 796–803.

[374] U.S. Department of Defense. Dictionary of Military and Associated
Terms - Joint Publication 1-02. http://www.dtic.mil/doctrine/jel/doddict.

[375] U.S. Federal Aviation Administration. Instrument Flying Handbook
(FAA-H-8083-15A). Superintendent of Documents, United States Government
Printing Office (GPO), 2008, ch. Airplane Attitude Instrument Flight.

[376] Usui, M., Simpson, A., Smith, S., and Jacob, J. Development and
Flight Testing of a UAV with Inflatable-Rigidizable Wings. In Proceedings of
the American Institute of Aeronautics and Astronautics (2004).

363

[377] Valpolini, P. ISR in Afghanistan: SR Easier than I. armada International,
2 (2010), 46–50.

[378] Valsalam, V. K., Hiller, J., MacCurdy, R., Lipson, H., and Mi-
ikkulainen, R. Constructing Controllers for Physical Multilegged Robots
using the ENSO Neuroevolution Approach. Evolutionary Intelligence 5, 1
(2012), 45–56.

[379] Varela, F., Thompson, E., and Rosch, E. The Embodied Mind: Cog-
nitive Science and Human Experience. MIT Press, Cambridge, MA, USA,
1991.

[380] Vavak, F., and Fogarty, T. A Comparative Study of Steady State
and Generational Genetic Algorithms for Use in Nonstationary Environments.
Evolutionary Computing 1143 (1996), 297–304.

[381] Venugopal, K. P., Sudhakar, R., and Pandya, A. S. On-line Learn-
ing Control of Autonomous Underwater Vehicles Using Feedforward Neural
Networks. IEEE Journal of Oceanic Engineering 17, 4 (1992), 308–319.

[382] Vidal, R., Shakernia, O., Kim, H., Shim, H., and Sastry, S. Multi-
Agent Probabilistic Pursuit-Evasion Games with Unmanned Ground and
Aerial Vehicles. IEEE Transactions on Robotics And Automation 18, 5 (2002),
662–669.

[383] Viieru, D., Tang, J., Lian, Y., Liu, H., and Shyy, W. Flapping and
Flexible Wing Aerodynamics of Low Reynolds Number Flight Vehicles. In
Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit (2006).

[384] Vincent, P., and Rubin, I. A Framework and Analysis for Cooperative
Search Using UAV Swarms. In Proceedings of the 2004 ACM Symposium on
Applied Computing (2003), pp. 79–86.

[385] Walker, M. Comparing the Performance of Incremental Evolution to Direct
Evolution. In Proceedings of the 2nd International Conference on Autonomous
Robots and Agents (2004), pp. 119–124.

[386] Watkins, S., and Vino, G. The Turbulent Wind Environment of Birds,
Insects and MAVs. In Proceedings of the 15th Australasian Fluid Mechanics
Conference (2004).

[387] Watson, R., Ficici, S., and Pollack, J. Embodied Evolution: Embody-
ing an Evolutionary Algorithm in a Population of Robots. In Proceedings of
CEC 99, the 1999 Congress on Evolutionary Computation (1999), pp. 335–
342.

[388] Watson, R., Ficici, S., and Pollack, J. Embodied Evolution: Dis-
tributing an Evolutionary Algorithm in a Population of Robots. Robotics and
Autonomous Systems, 39 (2002), 1–18.

[389] Weiss, G. MultiAgent Systems. A Modern Approach to Distributed Artificial
Intelligence. MIT Press, Cambridge, MA, USA, 2000.

[390] Weisstein, E. W. Moore Neighborhood (from MathWorld - A Wolfram Web
Resource). http://mathworld.wolfram.com/MooreNeighborhood.html.

364

[391] Welch, G., and Bishop, G. An Introduction to the Kalman Filter. http:

//www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf, 1995.

[392] Weng, J. Developmental Robotics: Theory and Experiments. International
Journal of Humanoid Robotics 1, 2 (2004), 199–236.

[393] Widrow, B., and Jr, M. H. Adaptive Switching Circuits. In IRE
WESCON Convention Record (1960), vol. 4, pp. 96–104.

[394] Williams, W., and Harris, M. The Challenges of Flight-Testing Un-
manned Air Vehicles. In Proceedings of SETE 2002, the Systems Engineering,
Test & Evaluation Conference (2002).

[395] Wolfram, S., and Gad-el Hak, M. A New Kind of Science. Applied
Mechanics Reviews 56 (2003).

[396] Wood, R., and Di Paolo, E. New Models for Old Questions: Evolution-
ary Robotics and the ’A not B’ Error. In Proceedings of the 9th European
Conference on Advances in Artificial Life (2007), pp. 1141–1150.

[397] Wooldridge, M. An Introduction to MultiAgent Systems. John Wiley &
Sons, Inc., New Yotk, NY, USA, 2002.

[398] Wright, S. The Roles of Mutation, Inbreeding, Crossbreeding and Selection
in Evolution. Proceedings of the Sixth International Congress of Genetics 1
(1932), 356–366.

[399] Wu, A. S., Schultz, A. C., and Agah, A. Evolving Control for Dis-
tributed Micro Air Vehicles. In Proceedings of CIRA ’99, the IEEE Interna-
tional Symposium on Computational Intelligence in Robotics and Automation
(1999), pp. 174 – 179.

[400] Wu, H., Sun, D., and Zhou, Z. Micro Air Vehicle: Configuration, Analysis,
Fabrication, and Test. IEEE/ASME Transactions on Mechatronics 9, 1 (2004),
108–117.

[401] Wu, H., Sun, D., Zhu, H., and Zhou, Z. An Autonomous Flight Control
Strategy Study of a Small-Sized Unmanned Aerial Vehicle. IEEE Transactions
on Electronics E88-C, 10 (2005), 2028–2036.

[402] Wu, H.-y., Sun, D., Zhou, Z.-y., Xiong, S.-s., and Wang, X.-h. Mi-
cro Air Vehicle: Architecture and Implementation. In Proceedings of ICRA
2003, the IEEE International Conference on Robotics & Automation (2003),
pp. 534–539.

[403] Yenne, B. Attack of the Drones: a History of Unmanned Aerial Combat.
Zenith Press, Minneapolis, MN, USA, 2004.

[404] Yuh, J. A Neural Net Controller For Underwater Robotic Vehicles. IEEE
Journal of Oceanic Engineering 15, 3 (1990), 161–166.

[405] Zagal, J., del Solar, J. R., and Vallejos, P. Back to Reality: Crossing
the Reality Gap in Evolutionary Robotics. In Proceedings of IAV 2004, the
5th IFAC Symposium on Intelligent Autonomous Vehicles (2004).

365

[406] Zetule, F. Multi-Agent Systems in Search and Destroy Scenario Evolved
Using Genetic Algorithm: Research on Selection Algorithm. Master’s thesis,
University of Plymouth, UK, 2008.

[407] Zhang, Y., Hearn, G. E., and Sen, P. A Neural Network Approach
to Ship Track-Keeping Control. IEEE Journal of Oceanic Engineering 21, 4
(1996), 513–527.

[408] Ziemke, T. On the Role of Robot Simulations in Embodied Cognitive Science.
AISB Journal 1, 4 (2003), 389–399.

[409] Ziemke, T., Bergfeldt, N., Buason, G., Susi, T., and Svensson, H.
Evolving Cognitive Scaffolding and Environment Adaptation: A New Research
Direction for Evolutionary Robotics. Connection Science 16, 4 (2004), 339–
350.

[410] Zufferey, J.-C., Guanella, A., Beyeler, A., and Floreano, D.
Flying Over the Reality Gap: from Simulated to Real Indoor Airships. Au-
tonomous Robots 21, 3 (2006), 243–254.

[411] Zufferey, J.-C., Hauert, S., Stirling, T., Leven, S., Roberts, J.,
and Floreano, D. Aerial Collective Systems. In Handbook of Collective
Robotics: Fundamentals and Challenges, S. Kernbach, Ed. CRC Press, Lon-
don, UK, 2012.

366

Appendix A

Micro-unmanned Aerial Vehicles:

a review

This appendix reviews some of the most popular MAV platforms available either on

the market or developed for military or scientific purposes.

A.1 AeroVironment Inc.

One of the major players in MAVs arena is certainly AeroVironment Inc. (AV)1. The

California-based company, founded by Paul MacCready in 1971, was the developer

of the Black Widow MAV mentioned in previous section. Taking inspiration from

the creation of that early model, the American company developed two new families

of Nano-UAVs: the Hornet2 and the Wasp3 (with the latest that started as a N-UAV,

but modified during the design process and ended up being a M-UAV).

The Hornet (see Figure A.1(a)) made what it is believed to be the world’s first

successful flight (21st March 2003) of a miniature air vehicle powered entirely by a

hydrogen fuel cell. The Hornet’s design is characterised by a straight rectangular

wing of 38cm span, 180g of takeoff weight and a frontal propeller. The fuel cells are

built into the top of the wing, where they combine oxygen in the ambient air with

hydrogen produced internally by the N-UAV through reaction of a hybrid material

1http://www.avinc.com/
2http://www.avinc.com/uas/adc/hornet/
3http://www.avinc.com/uas/small_uas/wasp/

I

with water.

The Wasp family is the outcome of a multi-year effort between AV and DARPA,

which evolved following a three-step (Block I, Block II, and Block III) path to reach

the configuration eventually available on the market. The earliest design, which was

assigned the name of Wasp Block I4 (see Figure A.1(b)), is a N-UAV with a flying

wing configuration in which the wing is in the form of a rectangle with a slightly

swept leading edge. The wingspan is 33cm, while the weight equals is just 210g. As

it is the case in all of the sub-sequential Wasp models, the Block I version mounts an

electric fuelled propeller. The design of the Wasp Block II (see Figure A.1(c)) is very

similar to the one of its predecessor, just slightly bigger because of a 41cm wingspan

and a takeoff weight of 275g, that combined together make this aircraft fall into the

M-UAV category rather than in the N-UAV one. Wasp Block III5 (see Figure A.1(d))

can be considered the final product of the AeroVironment efforts and was selected as

the reference platform for the USAF BATMAV program in 20076. Wasp III can be

manually operated from a ground control station or pre-programmed for GPS-based

autonomous navigation. With a 72cm wingspan and a weight of 430g7 the Wasp III

is the smallest UAV system currently sold by AeroVironment.

More in general, for what concerns Mini-UAVs AeroVironment has a significant

history to exhibit. The Dragon Eye8 (see Figure A.2(a)) is a back-packable 1.1m

wingspan and 2.7kg heavy aircraft falling into the M-UAV class9, the design of

which dates back to 2001. The aircraft mounts two forward-facing twin propellers

on the main wing, powered by an electric battery that offers (in single use battery

configuration) between 45 and 60 minutes of flight endurance at 35km/h. The

payload installed by default is quite rich, consisting in a dual forward and side-look

EO camera, a forward and side-look low light camera, and a side-look IR camera, all

of them installed on the nose of the aircraft. The ground control station that comes

with this MAV guarantees an operation range of up to 5km. What is interesting

4http://www.designation-systems.net/dusrm/app4/index.html
5http://www.avinc.com/uas/small_uas/wasp/
6http://www.avinc.com/resources/press_release/u.s._air_force_takes_

delivery_of_batmav_micro_unmanned_aircraft/
7http://www.avinc.com/downloads/Wasp_III.pdf
8http://www.avinc.com/uas/adc/dragoneye/
9http://www.avinc.com/downloads/Dragon_Eye_AV_datasheet.pdf

II

(a) (b)

(c) (d)

Figure A.1: (a) AV Hornet; (b) AV Wasp Block I; (c) AV Wasp Block II; (d)
AV Wasp Block III / BATMAV. Sources: (a) http://www.avinc.com/uas/adc/

hornet/; (b-c) http://www.designation-systems.net/dusrm/app4/wasp.html; (d)
http://www.af.mil/information/factsheets/factsheet.asp?id=10469

about this model is the fact that the operator can control the Dragon Eye wearing

a pair of properly designed video goggles. Differently from most of the products

designed by AeroVironment, the Dragon Eye is bungee-launched10. This makes it

slightly more difficult to deploy this platform on ones own. The MAV is recoverable,

as it comprises features for conventional horizontal landing.

The U.S. Marine Corps, in 2003, ordered 1,000 Dragon Eye UAVs to be integrated

within its forces, before switching to the Raven model when this was made available.

The Raven is a family of Small UAVs for which the latest update consists in the

RQ11 model11 (see Figure A.2(b)). As it was the case with its predecessor, also the

Raven B System12 is offered in three different configurations according to the selling

10The launch system is similar to aircraft carriers catapults.
11http://www.avinc.com/uas/adc/raven/
12http://www.avinc.com/uas/small_uas/raven/

III

target: international markets13, domestic (US) market14 (the code name is Raven

RQ11-A for both these two models), and US Air Force15 (RQ-11B model).

(a) (b)

Figure A.2: (a) AV Dragon Eye; (b) AV Raven RQ-11A. Sources: (a) http://

www.avinc.com/uas/small_uas/dragon_eye/; (b) http://www.avinc.com/glossary/

raven

All of these three setups are pretty similar to each other and characterised by a

1.4m wingspan and a weight of 1.9kg. The Raven can fly at speeds between 32 and

81km/h, at an altitude between a minimum of 30m and a maximum of about 150m.

This MAV is hand-launched and installs a backward facing propeller activated by

an electric battery. The autonomy provided by the use of rechargeable lithium ion

batteries has been estimated at 60-90 minutes, while single use batteries can provide

80-110 minutes of continuous flight. The standard payload (weighing less than 190g)

consists of two forward and side-look EO cameras (with electronic stabilised pan-

tilt-zoom) installed on the MAV nose, as well as a forward and side-look IR camera.

The ground control station offered with the MAV is a lightweight ruggedised one,

running a control software developed by AeroVironment that combined with the

hardware provided will guarantee a 10km operational range.

The differences between the three versions are relatively minor. The specifica-

tions mentioned above refer to the “international” model. The one targeted to the

US market provides additional communication features, as for example the possibil-

ity of deconflicting occupied frequencies, and a stronger default data encryption on

13http://www.avinc.com/downloads/Raven_INTL_1210.pdf
14http://www.avinc.com/downloads/Raven_Domestic_1210.pdf
15http://www.avinc.com/downloads/USAF_Raven_FactSheet.pdf

IV

data transmitted between the MAV and the ground station. The military version

of the Raven offers a slightly larger control range (up to 12km) instead and more

sophisticated payloads that can be installed on the aircraft (as day/night camera

and thermal imager).

AeroVironment also has few Small-UAVs on its catalogue. The (supposedly)

earliest S-UAV produced by the Californian company is the Pointer FQM-151A

MAV16 (see Figure A.3(a)). Its development started in 1986. It took about four

years before both the U.S. Army and the U.S. Marine Corps decided to adopt it,

buying about 50 models that were employed during the first Gulf War also. The

FQM-151A is characterised by a simple single-boom parasol sailplane configuration.

It is hand-launched and powered by a 300W electric motor, which uses either Li/SO2

primary or Ni/Cd rechargeable batteries to operate a backward-facing propeller

installed at the middle of the main wing. The design specifications17 mention a 2.74m

wingspan, 4.3kg of takeoff weight, a maximum speed of 80km/h, and 20/60 minutes

of autonomy depending on the employment of rechargeable rather than single use

batteries. The payload this MAV can transport is quite limited if compared to

today’s standard as it only supports a colour or a night vision camera. The ground

control station used to operate the Pointer consists of two units, the pilot having

a display and control box to fly the vehicle using the video from the camera (the

maximum operation range guaranteed is 5km); the second operator having a hand-

held display and a VCR unit with microphone to record commentary on the observed

video picture.

The Puma AE (All Environment)18 (see Figure A.3(b)) is an evolution of the

earlier Puma19 model, in turn a technological improvement over the Pointer FQM-

151A20. With regard to its technical specifications21, the wingspan of the Puma AE

S-UAV is exactly twice as much as Raven’s one, i.e. 2.8m. The takeoff weight

is also significantly higher, as it amounts on this model to 5.9kg. The MAV is

16http://www.avinc.com/uas/adc/pointer/
17http://www.designation-systems.net/dusrm/m-151.html
18http://www.avinc.com/uas/small_uas/puma/
19http://www.avinc.com/uas/adc/puma/
20http://www.defenseindustrydaily.com/Puma-AE-An-All-Environment-Mini-UAV-04962/
21http://www.avinc.com/downloads/PumaAE_0910.pdf

V

hand-launched and it flies with a frontal propeller controlled by an electric bat-

tery. The flight autonomy has been estimated at two hours with cruise speed of

between 37km/h and 83km/h, at a typical operating altitude of 152m. The pay-

load is hosted inside a gimballed slot and consists of an IR illuminator and a EO/IR

stabilised camera, capable of 360 degrees continuous pan and +10/-90 degrees tilt.

One of the most interesting features of the Puma AE consists in the fact that its

structure is completely waterproof, allowing the MAV to be employed for both land

based and maritime operations. Despite the fact that this aircraft shares the same

ground control station as the Raven and the Wasp, a relatively high level of au-

tonomous control is provided, including the possibility for the UAV to perform an

autonomous deep-stall landing. Furthermore, the more advanced communication

hardware installed on the Puma AE allows up to 15km of operational range.

On the basis of the experience acquired with the design of the Hornet, the Puma

has been develop in a fuel cell version as well22.

(a) (b)

Figure A.3: (a) AV Pointer FQM-151A; (b) AV Puma AE (All Environment).
Sources: (a) http://www.avinc.com/uas/adc/pointer/; (b) http://www.avinc.com/

uas/small_uas/puma/

More recently, AeroVironment has started to work on two additional models: the

Switchblade23 (see Figure A.4(a)), a fixed wing aircraft that follows the history of

the company in manufacturing M-UAVs, and the bio-inspired Nano Hummingbird24

(see Figure A.4(b)), a new (at least for AeroVironment) flapping-bird UAV concept.

22http://www.avinc.com/uas/adc/fuel_cell_puma/
23http://www.avinc.com/uas/adc/switchblade/
24http://www.avinc.com/nano

VI

Closing this parenthesis dedicated to AV, it is worth mentioning the Hawk-

Eye project25. HawkEye was the name of an interesting concept design (see Fig-

ure A.4(c)) for a non-powered Small UAV presented in 2007. Its tandem wing

glider design was aimed at covertly delivering critical payloads to ground person-

nel with high precision. Experiments carried out on early prototypes proved that

the HawkEye could deliver payloads as large as 25kg26. The HawkEye has been

conceptualised to be capable of flying up to 80km far from the deployment point,

fully autonomously or remotely controlled. The possibility of incorporating optional

propulsion systems into the MAV in order to extend endurance and range (although

compromising the possibility of carrying out absolutely silent operations, virtually

unnoticeable during night hours) has also been investigated.

(a) (b)

(c)

Figure A.4: (a) AV Switchblade; (b) AV Nano Hummingbird; (c) AV HawkEye.
Sources: (a) http://www.avinc.com/uas/adc/switchblade/; (b) http://www.avinc.

com/nano/; (c) http://www.avinc.com/uas/adc/hawkeye

25http://www.avinc.com/uas/adc/hawkeye/
26http://defense-update.com/features/du-1-07/aerialdelivery6-ulav.htm

VII

A.2 Lockheed Martin

When discussing military technologies, Lockheed Martin27 must be mentioned, as it

is the largest provider of IT services, systems integration, and training to the U.S.

Government. Principally engaged in the research, design, development, manufac-

ture, integration and sustainment of advanced technology systems, products, and

services, Lockheed Martin has one M-UAV platform on its catalogue, specifically

the Desert Hawk III28 (DH III, see Figure A.5).

Figure A.5: Lockheed Martin Desert Hawk MAV. Source: http://www.army.mod.

uk/equipment/aircraft/1535.aspx

The technical specifications29 mention a 1.37m wingspan, an empty weight of

2.7kg and up to 900g of transportable extra payload. The flight endurance is esti-

mated at 90 min, and the platform can cope with winds as strong as 25kts. The

operational range is up to 15km from the ground control station. The DH III has

a 360 degree turret which can host a colour EO (capable of 10x optical zoom) or a

long-wave IR imagers, as well as a RF signal geolocation module. Thanks to this

configuration, the UAV can guarantee a continuous coverage of targets without the

need to manoeuvre the aircraft.

27http://www.lockheedmartin.com/
28http://www.lockheedmartin.com/products/DesertHawk/
29http://www.lockheedmartin.com/data/assets/ms2/pdf/Desert_Hawk_III_

brochure.pdf

VIII

A.3 AAI Corporation

Another significant role in the small UAVs arena is played by the AAI Corporation30

which sells three families of unmanned aircraft systems: the Shadow, the Orbiter,

and, through the controlled company Aerosonde, the Mark. The Shadow family is

a group of “proper” UAVs comprising the Shadow 20031, the Shadow 40032, and the

Shadow 60033, while the Orbiter and the Mark falls into the Small-UAV (S-UAV)

category.

The Orbiter34 (see Figure A.6), developed in collaboration with the Israel-based

company Aeronautics Ltd.35, was introduced in 2009. Its main technical specifica-

tions highlight a 220cm wingspan and a takeoff weight of 6.5kg. The Orbiter flies

thanks to a battery-powered backward-facing propeller, which guarantees between 2

and 3 hours of endurance at a speed in the 45−140km/h range. The launch method

employed by this S-UAV is by catapult. The landing/recovery method is unusual

also, as it consists of switching off the engine followed by the automatic deployment

of a parachute and the inflation of an air bag located on the belly of the aircraft.

The company does not provide any information about the default payload installed

on the Orbiter. The only information available mentions a “gyro-stabilised zoom

payload”, and a day and night operational capability.

The Orbiter can be remotely controlled in camera-guided flight mode through

the so called One System Ground Control Station (OSGCS). It is pretty interesting

to look at the remote control device developed by AAI Corporation. As it can be

seen in Figure A.7, the remote control is built around a flat screen with about a 10”

diagonal, with the two handles that allow the end user to operate it incorporating

the two joysticks used to control the flight.

The Orbiter is available in two different configurations depending on the char-

acteristics of the operations to be carried out. The default setup allows for an

operational range of 15km, while an extended version is available permitting to

30http://www.aaicorp.com/
31http://www.aaicorp.com/pdfs/shadow_200.pdf
32http://www.aaicorp.com/pdfs/shadow400_12-18-09bfinal.pdf
33http://www.aaicorp.com/pdfs/shadow600_12-18-09bfinal.pdf
34http://www.aaicorp.com/pdfs/uas_orbiter07-20-09.pdf
35http://www.aeronautics-sys.com/

IX

Figure A.6: AAI Orbiter Mini UAS. Source: http://www.defenseindustrydaily.

com/Mexico-Adds-More-Israeli-Surveillance-Platforms-05291/

Figure A.7: One System Ground Control Station (OSGCS). Source: http://www.

aaicorp.com/pdfs/uas_orbiter07-20-09.pdf

extend this range to 50km.

For what concerns the AAI-Aerosonde Mark 4.736 (see Figure A.8(a)) this is

an exponent of the Aerosonde Mark 4 UAS modular fleet. The Mark 4.7 uses a

propulsion system which is relatively unusual for small UAVs, consisting in a J-

type, four-stroke, 24cc electronic fuel injection (EFI) combustion engine. The use of

such a propulsion system (which can also be upgraded to a K-twin, dual cylinder,

four-stroke, EFI engine) makes the Mark 4.7 significantly heavier than miniature

UAV systems of comparable sizes. With a wingspan of 360cm, the weight of the

aircraft amounts to either 17.5 or 25kg depending on the engine installed. The cruise

36http://www.aerosonde.com/pdfs/aerosonde-mark-47.pdf

X

speed guaranteed is about 90− 110km/h with dash speeds of 115− 150km/h at sea

level.

(a) (b)

Figure A.8: (a) AAI-Aerosonde Mark 4.7; (b) details of the combined
launch/recovery system used by the Mark 4.7. Sources: (a) http://www.

azorobotics.com/News.aspx?newsID=2187; (b) http://www.defenseindustrydaily.

com/From-Dolphins-to-Destroyers-The-ScanEagle-UAV-04933/

The Mark 4.7 takes off with the aid of a rail launcher, while the the recovery is

provided by a net. AAI offers a trailer-mounted, combined launch/recovery system,

which allows for deployment within confined-area and maritime operations (see Fig-

ure A.8(b)). Again, no extensive details are provided about the payload installed as

standard. The specifications just mention in fact a “combined electro-optic (EO),

infrared (IR) and laser pointer (LP) payload”.

A.4 Israel Aerospace Industries (IAI)

In addition to conventional UAVs, another company, namely IAI (Israel Aerospace

Industries)37, has on its catalogue three different miniature unmanned aircraft.

First of all we have the Mosquito38 (see Figure A.9), a Nano-UAV (N-UAV)

with a wingspan of 35cm and a maximum takeoff weight (including a 150g payload)

37http://www.iai.co.il
38http://www.iai.co.il/sip_storage/FILES/4/38204.pdf

XI

equal to 500g. The Mosquito is moved by a front-facing propeller, fuelled by an

electric battery that guarantees about 40 minutes of endurance at the cruise speed

of 60km/h (the Mosquito can allegedly reach a maximum speed of 110km/h). The

only payload carried by this aircraft consists of a miniature colour video camera.

The Mosquito can be hand or bungee launched and lands on its belly.

Figure A.9: IAI Mosquito Micro-UAV. Source: http://www.iai.co.il/sip_

storage/FILES/4/38204.pdf

The BirdEye 65039 (see Figure A.10) is a significantly larger model, given its 3m

wingspan and the 11kg of takeoff weight (1.2kg of which are due to the payload) this

makes it fall into the S-UAV category. The size imposes constraints on the launch

method, as the takeoff that can only take place through a rail launcher. A single

backward-facing propeller keeps the BirdEye in the air. The aircraft can install both

standard and fuel cell batteries, providing endurance for 3 and 7 hours respectively

at a cruise speed of 75km/h (the maximum speed of this aircraft is about 120km/h).

Figure A.10: IAI Mini UAS BirdEye 650. Source: http://www.flightglobal.com/

articles/2010/02/10/338193/iai-unveils-bird-eye-650-uav.html

Finally IAI sells the Mini Panther40 (see Figure A.11), an electrically propelled

39http://www.iai.co.il/sip_storage/FILES/3/38203.pdf
40http://www.iai.co.il/sip_storage/FILES/9/38199.pdf

XII

Small UAV with a 2.5m wingspan, and a maximum takeoff weight of 12kg (2kg for

the payload). The main characteristics of the Mini Panther consists in the possibility

for the back propeller of tilting (this UAV uses three propellers, two forward-facing

and the other one oriented backward), thus making the aircraft capable of automatic

vertical takeoff and landing (AVTOL). The operation range is about 20km and the

integrated battery guarantees up to 1.5 hours of endurance at a cruise speed between

55 and 75km/h. The default payload includes EO and IR cameras.

Figure A.11: IAI Mini Panther. Source: http://www.iai.co.il/sip_storage/

FILES/9/38199.pdf

A.5 Insitu

Among the companies actively involved in miniature UAVs production we find the

Washington-based Insitu41 also, which has on its catalogue two different models.

The ScanEagle42 (see Figure A.12(a)), developed in collaboration with Boeing,

is a 3.11m wingspan Small UAV supporting a maximum takeoff weight of 20kg.

The aircraft is powered by a 1.4kw 2-stroke engine, fed using either gasoline or

heavy fuel. The endurance level guaranteed by such propulsion system is extremely

high and has been estimated at 24 hours or more at a cruise speed of 90km/h (the

maximum horizontal speed this aircraft can reach is slightly lower than 150km/h).

The standard payload consists of a high-resolution electro-optic camera or an IR one,

41http://www.insitu.com
42http://www.insitu.com/documents/InsituWebsite/MarketingCollateral/

ScanEagleFolderInsert.pdf

XIII

installed on an inertially stabilised turret system. The vehicle can communicate with

a ground station located up to 100km from it. The launch and recovery methods of

the ScanEagle are quite unusual as they consist in a pneumatic catapult launcher

for the takeoff, and in a “SkyHook wingtip capture43” system for the recovery part

(see Figure A.12(b)).

(a) (b)

Figure A.12: (a) Insitu ScanEagle; (b) the SkyHook device used for the recovery.
Source: http://www.insitu.com/index.cfm?navid=422

The ScanEagle is also available in a “dual bay” version44 which provides addi-

tional room for payload to be installed.

The NightEagle45 (see Figure A.13) is the other S-UAV model produced by Insitu.

Slightly bigger than the ScanEagle (from which it is derived), thanks to its 3.19m

wingspan and its maximum takeoff weight of 22kg, the NightEagle differentiates

from its predecessor mainly because it carries a mid-wave infrared (MWIR) imager

payload onboard.

A.6 Elbit Systems

The last company we have decided to include in this brief review is Elbit Systems46,

which produces two families of UAV systems: the Hermes as full-sized UAVs, and the

43http://www.roboticstrends.com/security_defense_robotics/article/insitu_
demonstrates_one_launch_and_recovery_system

44http://www.insitu.com/documents/InsituWebsite/MarketingCollateral/
ScanEagleDualBayFolderInsert.pdf

45http://www.insitu.com/documents/InsituWebsite/MarketingCollateral/
NightEagleFolderInsert.pdf

46http://www.elbitsystems.com

XIV

Figure A.13: Insitu NightEagle. Source: http://www.insitu.com/documents/

InsituWebsite/MarketingCollateral/NightEagleFolderInsert.pdf

Skylark for what concerns miniature systems. The Skylark comprises two models:

the Skylark I-LE47, and the Skylark II48. The latter has been excluded from this

review as its size does not match the criterion we have established for categorising

small UAVs.

The Skylark I-LE (see Figure A.14) is a 2.9m wingspan S-UAV having a maxi-

mum takeoff weight of 6.5kg. With an operation radius of 15km and an endurance

estimated in 3 hours, the Skylark counts on its flexibility rather than on its tech-

nical specifications. The entire system (UAV and ground station) can be easily

backpacked and quickly deployed thanks to the possibility of launching it by hand

(although through a bungee-assisted system). The recovery method consists of mak-

ing the UAV perform an automatic deep-stall followed by the inflation of an air-bag

located under its belly. The default payload consists of gimbaled and stabilised

EO or IR cameras. An interesting feature offered by this system is the simulator

environment embedded in the ground station, which allows the simulation of flight

paths that can be followed before actually going through them.

A.7 AerialRobotics

For what concerns the amateur/civilian usage of small UAVs, AerialRobotics49 -

a little company located in Poland - has gained a strong reputation as provider

47http://elbitsystems.com/Elbitmain/files/Skylark_1_LE.pdf
48http://elbitsystems.com/Elbitmain/files/Skylark_2_hr.pdf
49http://www.aerialrobotics.eu

XV

Figure A.14: Elbit Systems Skylark I-LE. Source: http://defense-update.com/

products/s/skylark1-uav.htm

of affordable and robust solutions for aerial photography. AerialRobotics started

producing the EasyUAV50, a UAV developed on the basis of the EasyStar ARF

Electric RC Airplane51 (see Figure A.15(a)) with the integration of a self-developed

autopilot system (the FlexiPilot, that will be reviewed in one of the next sections),

and photographic equipment. The EasyStar is an electrically propelled aircraft,

which mounts a single backward facing propeller. Its wingspan amounts to 1.38m

and its takeoff weight to 680g. As the original design has been made with hobbyists

in mind, the endurance offered by the Permax 400 engine just reaches the 12-18

minutes range.

As a side note, it is interesting to report something that appears in the EasyUAV

user’s guide and which justifies the usage of autonomous UAVs (in place of standard

remote-controlled aerial vehicles) for tasks such as aerial photography:

“The popular perception of UAV (Unmanned Aircraft Vehicle) blends
with RC flying models. While both can look the same, the actual style of
operation and goals differ significantly. A flying RC model is used under
manual control all the time and requires constant visual supervision of
the operator in order to keep the plane inside comfortable visual range,
which is around 300-500m. The manoeuvers of such planes are very
violent despite best efforts of their operators, aerial video obtained this
way is notoriously unstable and the photos are either blurred or badly
positioned due to large effort of combining photo shooting with navigation
and maintaining level flight. The use of wireless camera and goggles
allows for very popular hobby called FPV (First Person View) flying.

50http://www.aerialrobotics.eu/easyuav/easyuav-manual-en.pdf
51http://www.hobby-lobby.com/easystar.htm

XVI

(a) (b)

Figure A.15: (a) AerialRobotics EasyUAV (modified EasyStar); (b) AerialRobotics
Pteryx. Sources: (a) http://www.diydrones.com/profile/RobertDrone; (b) http:

//www.troybuiltmodels.com/items/PTERYX-UAV.html

While such systems usually display GPS position, flying smoothly along
waypoint still requires constant supervision and is usually not feasible
with precision better than 50m while keeping the flying style smooth, what
is a requirement for good quality video and sharp aerial photography.
Another limitation is the weight of the wireless video gear that occupies
the payload for a better camera.”

The EasyUAV was recently updated, resulting in the production of the Pteryx

S-UAV52 (see Figure A.15(b)). The design of this new model is similar to that of

its predecessor, with the main difference consisting in the position of the propeller,

which is now facing forward rather than backward. With a wingspan of 2.4m,

a maximum takeoff weight of 5kg (up to 1kg of which consists in the payload,)

and a lithium-ion polymer battery operating a brushless DC electric motor which

guarantees 1h endurance with 1kg payload (up to 2h with 250g payload), the Pteryx

presents itself as a more solid and flexible platform compared with the EasyUAV.

Most of the advantages provided by this aircraft come from the fact that it can be

easily assembled (the process takes only five minutes according to the company),

and does not necessarily require a ground station to fly. The data collected by

the embedded digital camera can be used for generating digital elevation models

using external photogrammetric software and orthorectification procedure, obtaining

surface maps for precision agriculture using mosaicking software, and performing site

52http://www.trigger.pl/pteryx/Pteryx-UAV.php

XVII

and long range linear mapping through georeferencing of the data obtained.

A.8 Miscellaneous

The Airborne S-UAV platform [254] (see Figure A.16), developed by Miller and

colleagues at the Pennsylvania State University on the basis of the commercially

available SIG Kadet Senior RC plane53, is a 2m wingspan aircraft with a takeoff

weight just below the 3kg built with the intention of studying intelligent control.

The Airborne is powered by a 4-stroke 0.91 cube inches engine. In order to be

made autonomous, the aircraft has been further equipped with a NiMH battery

pack that provides energy to the servomotors operating the flight control surfaces.

The main physical structure has been also strengthened in order to support the

additional weight installed. An autopilot (specifically a no longer available Piccolo

Plus54), an onboard computer (namely an Ampro ReadyBoard 800 Single Board

Computer, SBC55), and several sensors (as, among others, a GPS receiver) have

been incorporated into the structure as well. An autonomous intelligent controller

(IC, according to the definition used by the authors) is responsible of the high level

behaviours.

Figure A.16: Airborne platform. Source: [254]

Wu and colleagues [401, 400], in several works carried out mainly at the Tsinghua

53http://www.sigmfg.com/IndexText/SIGRC58ARFB.html
54http://www.cloudcaptech.com/SalesandMarketingDocuments/

PiccoloComparisonTable.pdf
55http://www.ampro.com/Products/ReadyBoard/readyboard_800/

XVIII

University in Beijing, have developed several prototypes of miniature UAVs, both in

triangle and square wing planforms, focusing on the study of aerodynamics at low

Reynolds numbers, through wind and water tunnels [360]. Two of the prototypes

they have built have been labelled TH360 and TH380 respectively (see Figure A.17

for an example).

Figure A.17: One of the research platforms developed by Wu and colleagues.
Source: [400]

We can now close this review mentioning a very popular product that hit the

shelves a few months ago. Other than be used for military operations, intelligence

purposes, law enforcement or various categories of civilian applications, small RC

air vehicles can be considered entertainment tools also. Even if it is not a fixed-wing

aircraft, which is the case for the AR.Drone56, a quad-rotor configuration system

produced by Parrot57 (see Figure A.18(a)). Although this platform has not been

thought to work autonomously, it is so robust and easily modifiable that on the

Internet several projects already appeared that made it possible to interact with

the outer navigation loop (while leaving the AR.Drone taking care of the inner

stabilisation loop), thus making the aircraft a UAV by all means58.

By default the AR.Drone can be remotely controlled by a dedicated app running

on an iPhone via a wireless link. Other than just being remotely controlled, addi-

tional applications are available allowing for more intensive (and entertaining) inter-

actions, such as simulating dogfights through augmented reality (see for example the

56http://ardrone.parrot.com/parrot-ar-drone/usa/
57http://www.parrot.com/usa/
58http://diydrones.com/profiles/blogs/turning-the-parrot-ardrone

XIX

(a) (b)

Figure A.18: (a) Parrot AR.Drone; (b) screenshot of the AR.FlyingAce application.
Sources: (a) http://www.itfgaming.com/tech-review/parrot-ar-drone-review;
(b) http://ardrone.parrot.com/parrot-ar-drone/en/ar-games/ar-flyingace

AR.FlyingAce application59, for which a screenshot can be found in Figure A.18(b)).

A.9 Classification

Just to summarise and conclude this section, we present here a table (Table A.1)

that resumes the main characteristics (wingspan and takeoff weight) of the aircraft

described in this section. This data is what has been used to plot Figure 3.3, which

displays both the boundaries between the categories (Small, Mini, and Micro UAVs)

we have identified in chapter 3 and where the Miniature UAVs presented herein falls

according to this classification system.

59http://itunes.apple.com/us/app/ar-flyingace/id422272353?mt=8&ls=1

XX

Table A.1: Classification of the miniature UAVs reviewed in the appendix, done
accordingly to the categories outlined in Chapter 3

Manufacturer Model Wingspan (cm) Weight (g) Category
AeroVironment Black Widow 15.2 56 Nano
AeroVironment Hornet 38 180 Nano
AeroVironment Wasp Block I 33 210 Nano
IAI Mosquito 35 500 Nano
AerialRobotics EasyUAV 138 680 Mini
AeroVironment Wasp Block II 41 275 Mini

AeroVironment
Wasp Block III
(BATMAV)

72 430 Mini

AeroVironment Raven RQ-11B 140 1900 Mini
AeroVironment Dragon Eye 110 2700 Mini
Lockheed Martin Desert Hawk III 137 3600 Mini
senseFly Swinglet 80 420 Mini
AAI Mark 4.7 360 25000 Small
AAI Orbiter 220 6500 Small
AerialRobotics Pteryx 240 5000 Small
AeroVironment Puma AE 280 5900 Small
AeroVironment Pointer FQM-151A 274 4300 Small
Elbit Systems Skylark I-LE 290 6500 Small
IAI BirdEye 650 300 11000 Small
IAI Mini Panther 250 12000 Small
Insitu ScanEagle 311 20000 Small
Insitu NightEagle 319 22000 Small

XXI

XXII

Appendix B

Autopilot systems

This appendix describes the most common autopilot systems available on the mar-

ket, presenting the most relevant technical details as well as referring to some sci-

entific publications in which they have been employed.

B.1 SBP400/MNAV

Crossbow1 is one of the world leading suppliers in ”smart-sensors technologies”

aimed at military programs and high-value, asset-tracking operations. One common

solution to the design of autopilot systems for MAVs consists in the combined use

of two products developed by Crosswbow, namely a Stargate board computer and

a MNAV Inertial Measurement Unit.

The SPB400 Stargate Gateway2 (see Figure B.1(a)) is a compact (8.9x6.35cm)

and low-power onboard computer endowed with a 400MHz PXA55 Intel XScale

processor and 64 MB of SDRAM memory. It provides several input/output in-

terfaces, such as Ethernet, RS-232, JTAG, USB, PCMCIA, and Compact Flash

(CF). In terms of communication capability, a Bluetooth interface is built in, while

802.11 Wi-Fi can be operated through dedicated PCMCIA or CF cards, or even

USB dongles. From a software point of view, the Stargate can run a dedicated

Debian-compatible open-source Linux distribution, based upon the 2.4.19 Kernel.

1http://www.xbow.com
2http://bullseye.xbow.com:81/Products/productdetails.aspx?sid=229

XXIII

The MNAV3 is a family of Inertial Measurement Units (IMUs) that, according

to the introduction present on the company website, has been designed for ”the pur-

pose of surface and aerial automated vehicle control and navigation4”. The 100CA

model5 (see Figure B.1(b)) is often used for aerial applications, and particularly in

conjunction with the above introduced SPB400 board, thanks to the 51-pin con-

nector that allows an easy connection between the two. Its comprehensive onboard

servo control solution includes both RC servo control hardware and an RC receiver

Pulse Position Modulation (PPM) interface. RC servo hardware provides users

with software-based control of up to nine separate servos while the PPM interface

enables software interpretation of RC receiver commands thereby offering users both

automated software control as well as manual “take-over” capability. The readings

provided by the internal sensors are given in output in a digital format and can be

accessed via a RS-232 link (in absence of a direct connection between the IMU and

the processing device).

(a) (b)

Figure B.1: (a) Crossbow SPB400 Stargate Gateway; (b) Crossbow MNAV 100CA
Inertial Measurement Unit. Sources: (a) http://www.willow.co.uk/html/spb400-_

stargate_gateway.html; (b) http://www.gpsarea.com/p_detail.asp?ID=412

The MNAV Autopilot Project6, started in 2005 and has been regularly updated

since then, provides an easy to use open-source software that can be employed as a

3http://bullseye.xbow.com:81/Products/productdetails.aspx?sid=193
4Other inertial systems developed by Crossbow are those belonging to the NAV420 (http:

//bullseye.xbow.com:81/Products/productdetails.aspx?sid=181) and NAV425EX
(http://bullseye.xbow.com:81/Products/productdetails.aspx?sid=251) families.

5http://bullseye.xbow.com:81/Products/Product_pdf_files/Inertial_pdf/
uNAV_Datasheet.pdf

6http://micronav.sourceforge.net/

XXIV

complete autopilot system with the SPB400 + MNAV hardware, and as a ground

station also.

Jang e Liccardo describe in [181] how to implement a complete autopilot system

on an off-the-shelf RC aircraft. Hing and colleagues [164] instead use the Star-

gate+MNAV combination to develop an unmanned aerial vehicle piloting system.

B.2 Procerus Kestrel System

Manufactured by Procerus Technologies7, Kestrel Autopilot System8 (see Figure B.2)

is allegedly the smallest (5x3.48x1.2cm) and lightest (16.7g) full-featured micro au-

topilot on the market, incorporating on its body both the IMU and the processing

unit.

Figure B.2: Procerus Kestrel Autopilot System. Source: http://www.procerusuav.

com/productsKestrelAutopilot.php

According to the official data sheet9, the sensorial apparatus consists of a 3-axis

angular rate and acceleration measurement device, a magnetometer (2 and 3-Axis),

a 20-point sensor temperature compensation system, and absolute and differential

pressure sensors providing barometric pressure, wind estimation, aircraft air speed

and altitude measurement. The system can use an external GPS unit for inertial

navigation and wireless modems communications between the ground station and

the autopilot. A miniaturised camera can be easily incorporated into the system

as well. The computing aspects are managed by a 29MHz Rabbit processor with

7http://www.procerusuav.com/
8http://www.procerusuav.com/productsKestrelAutopilot.php
9http://www.procerusuav.com/Downloads/DataSheets/Kestrel_2.4.pdf

XXV

512Kb of RAM memory, significantly slow in comparison with the one used on the

SBP400 board, but that can be replaced attaching an external unit to the Kestrel.

From an electromechanical perspective, the Kestrel can control 4 servos by default,

and up to 12 through additional ports.

The Kestrel can be installed on MAVs of different shapes. Procerus offers the

Unicorn (see Figure B.3), a simple airframe made of EPP foam that can be success-

fully used for research purposes, as a testbed platform. The University of Missouri

S&T AESS UAV Team describes in its online blog10 how they integrated the Kestrel

into several MAVs they designed.

Figure B.3: Procerus Unicorn MAV. Source: http://www.procerusuav.com/images/

large/img_zagi-closed_lrg.jpg

The autopilot system is completed by two proprietary pieces of software provided

by Procerus, the Kestrel Autopilot v2.4 software, to be run on the onboard controller,

and Virtual Cockpit v2.611 for the ground station.

A new version of the Kestrel Autopilot System (v3.0/VTOL)12 has recently been

released but no third-party reports about its usage have been found yet.

10http://www.aessuav.org/
11http://www.procerusuav.com/Downloads/DataSheets/Virtual_Cockpit_2.6.pdf
12http://www.procerusuav.com/Downloads/DataSheets/Kestrel3_VTOL_System_

2010.pdf

XXVI

B.3 MicroPilot MPxx28

MicroPilot13 offers a wide range of autopilot systems14, divided into several families:

the entry-level MP102815, the mid-range MP2028 (MP2028xp16 and MP2028g17),

and the latest top-range MP2128 (MP2128g18 and MP2128heli19).

The widely employed MP2028g (see Figure B.4) weights 28 grams (excluding the

GPS antenna) and it is 10x4x1.5cm in size. The device has a fully integrated 3-

axis gyros/accelerometers, a GPS receiver, pressure altimeter and pressure airspeed

sensors; it can control 8/16/24 servos according to the configuration. The onboard

computation is guaranteed by the use of a 20MHz Motorola processor.

From a technical point of view it is interesting to consider how the designers of

the MP2028g have decided to implement two separated energy supply circuits, one

of those solely dedicated to the control of the servos.

Figure B.4: MicroPilot MP2028g. Source: http://tom.pycke.be/category/

Construction/

The system does not appear as the most flexible one in terms of customisa-

tion possibilities for the end user, who is essentially only allowed to adjust the

autopilot functioning by tuning some parameters within the control feedback loops.

HORIZONmp UAV Ground Control Software20 is the software provided by MicroPi-

lot to be run on the ground station.

13http://www.micropilot.com/
14http://www.micropilot.com/products-mp2028-autopilots.htm
15http://www.micropilot.com/products-mp1028g.htm
16http://www.micropilot.com/products-mp2028xp.htm
17http://www.micropilot.com/products-mp2028g.htm
18http://www.micropilot.com/products-mp2128g.htm
19http://www.micropilot.com/products-mp2128heli.htm
20http://www.micropilot.com/products-horizonmp.htm

XXVII

An application of the Micropilot MP2028g can be seen in the LinkMAV platform

developed by Doherty and colleagues [98].

B.4 Cloud Cap Piccolo

Cloud Cap21 provides two families of autopilot systems, Piccolo SL22 and Piccolo

II23, both containing all the required control elements (3-axis gyroscope, 3-axis accel-

eration sensor, GPS receiver, integrated radio link, etc.) inside a small EMI shielded

enclosure. According to the official data sheet24 the two models are extremely sim-

ilar to each other in terms of capabilities, with the main difference consisting in

the slightly higher flexibility offered by the II model, thanks to the more input in-

terfaces available. This reflects in terms of size, with Piccolo II being significantly

bigger than the SL model (13.1x5.56x1.9cm for the Piccolo SL, 14.2x4.6x6.2cm for

the Piccolo II; see Figure B.5).

(a) (b)

Figure B.5: (a) Cloud Cap Piccolo SL; (b) Cloud Cap Piccolo II. Source: http:

//www.cloudcaptech.com/piccolo_system.shtm

The two autopilot systems support three on-the-fly flight modes: autonomous,

stability augmented steering, and manual control. Piccolo autopilots are available

in several different software configurations (economy feature set, standard feature

set, laser altimeter, RTK DGPS, RTK + moving platform recovery, helicopter oper-

ations), depending on the type and on the complexity of the reference application.

21http://www.cloudcaptech.com
22http://www.cloudcaptech.com/piccolo_sl.shtm
23http://www.cloudcaptech.com/piccolo_II.shtm
24http://www.cloudcaptech.com/SalesandMarketingDocuments/

PiccoloAutopilotSystem.pdf

XXVIII

Cloud Cap provides two ready-to-use solutions for the ground station, a desk-

top and a portable (PGS) one25, both running Piccolo Command Center (PCC)26

software.

The Piccolo SL (see Figure B.5(a)) is a replacement for the successful Piccolo

LT and Piccolo Plus models, that have been used for countless applications. Among

those, particularly relevant are the studies carried out by Almeida and colleagues

[10] at the University of Porto27, and by King et al. [190]. Ryan and colleagues [330]

have used a Piccolo autopilot in conjunction with a PC104 onboard computer on a

modified Sig Rascal 40 ARF aircraft28. The Piccolo II has been extensively tested

by Jager [178] instead.

B.5 UNAV 35xx and PICOPILOT

UNAV29 produces some of the most inexpensive complete autopilot systems avail-

able on the market. Two families of products are currently available: 35xx30 and

PICOPILOT31.

The 35xx family is built around the UNAV 3500FW32 (10.16x5.08x1.9cm, 35g),

a complete autopilot system that comprises a complete onboard AHRS (Attitude

and Heading Reference System), combined eight airdata sensors, a waterproof GPS

receiver and a radio-modem covering a 6 mile radius. Up to 7 servos can be controlled

by this autopilot that can also rely on two serial ports for being extended with

external peripherals.

Two miniaturised and slightly less sophisticated versions of the 3500FW (both

5.08x2.54x1.27cm in terms of size) are available, namely the 38g 352033 and the

cheaper 36g 355034 (see Figure B.6(a)).

25http://www.cloudcaptech.com/piccolo_groundstation.shtm
26http://www.cloudcaptech.com/piccolo_command_center.shtm
27http://whale.fe.up.pt/asasf/index.php/Main_Page
28http://www.rcuniverse.com/magazine/article_display.cfm?article_id=895
29http://www.u-nav.com
30http://www.u-nav.com/3550.html
31http://www.u-nav.com/picopilot.html
32http://www.u-nav.com/3500fw.html
33http://www.u-nav.com/3520.html
34http://www.u-nav.com/3550.html

XXIX

The PICOPILOT family was originally designed for electric motor-gliders, thus

the models belonging to this family can control the aircraft on one axis only (rudder

or aileron). UNAV makes the PICOPILOT available in four different configurations:

PICOPILOT-N35 (see Figure B.6(b)), PICOPILOT-NA36, PICOPILOT-NAT37, and

PICOPILOT-RTL38.

(a) (b)

Figure B.6: (a) UNAV 3550 sUAS autopilot; (b) UNAV PICOPILOT-N. Source:
http://www.u-nav.com

PICO-GS39 is the ground station software provided by the company. It is very

basic in terms of functionalities, as it only allows the user to display GPS data

received by a PICOPILOT system and transmitted via radio link to the ground

station. PICO-GS also features a ’Point-n-Click’ waypoint creation utility that

eases waypoint programming.

An application of the PicoPilot system to the SIG Kadet40 RC plane can be found

in [231]. The PicoPilot was also considered for the development of the Peregrine

Return Vehicle41, but an alternative solution was eventually preferred.

35http://www.u-nav.com/picopilot/ppn.html
36http://www.u-nav.com/picopilot/ppna.html
37http://www.u-nav.com/picopilot/ppnat.html
38http://www.u-nav.com/picopilot/pprtl.html
39http://www.u-nav.com/picopilot/picogs.html
40http://www.sigmfg.com/IndexText/SIGRC74.html
41http://spacegrant.colorado.edu/boulder/past/Peregrine05032007/index.htm

XXX

B.6 FlexiPilot and EasyUAV

FlexiPilot (see Figure B.7) is a complete autopilot system that was developed at first

at a hobbyist level42 by Krzysztof Bosak43 to work in conjunction with the EasyUAV

MAV platform44 (See Figure A.15(a)). FlexiPilot was originally designed to work

without the need of a ground station and in the easiest way possible, thus integrating

features as self-calibration and self-initialisation45. The autopilot quickly improved

in terms of performances, soon getting integrated into professional solutions for aerial

photography as the Pteryx MAV46 (and not being sold anymore as an individual

system).

Figure B.7: Two FlexiPilot autopilot systems stacked on top of each other. Source:
http://diydrones.com/page/flexipilot-1

The FlexiPilot incorporates a 6-DOF Inertial Measurement Unit and relies on

an external GPS receiver. The 5 output channels integrated provide control over

rudder, elevator, throttle, and two triggers, thus guaranteeing the applicability of

the autopilot on a wide range of aerial platforms.

From a software point of view, the FlexiPilot offers 3D waypoint navigation, au-

tomatic landing, and several low level functions that keep the aircraft stable making

it able to perform manoeuvres in the cleanest way possible.

42http://www.rcgroups.com/forums/showthread.php?t=1137076
43http://diydrones.com/forum/topic/listForContributor?user=kbosak
44http://www.aerialrobotics.eu/easyuav/easyuav-manual-en.pdf
45http://www.aerialrobotics.eu/flexipilot/flexipilot-advantage-en.pdf
46http://www.trigger.pl/pteryx/Pteryx-UAV.php

XXXI

XXXII

Appendix C

P-ARTS (Plymouth Advanced

Robot Training Suite)

”P-ARTS” (Plymouth Advanced Robot Training Suite) is the name given to the

computer facility used for carrying out the experiments described in Chapter 6. The

set of machines constituting this system have been awarded to our research group

by AppleTMfollowing our successful application to Apple’s ARTS (Apple Research

& Technology) programme1. The next two sections will briefly describe the main

components of P-ARTS both in terms of hardware and software.

C.1 Hardware

P-ARTS is physically constituted by two groups of components.

On one side we have a 24” Apple iMac desktop computer, powered by a 2.8Ghz

Intel Core 2 Duo processor and supported by 2GB of RAM and a 300GB hard

drive. This computer is not supposed to perform heavy computation, rather to

manage and supervise the work done by the “number cruncher” component of the

grid. The “brute force” comes in fact from four (now discontinued) Apple Xserve

”Xeon2” machines. The main specifications for each of these four servers mention:

a double 2.8GHz Quad-Core Intel Xeon processors (12MB of L2 Cache memory

per processor), 4GB of RAM (800 MHz DDR2 FB-DIMM), and a 80GB hard drive.

1http://www.apple.com/uk/education/arts/
2http://en.wikipedia.org/wiki/Xserve

XXXIII

Three of these machines are “headless”, while the other one mounts an ATI Radeon

X1300 graphics card with 64MB of VRAM.

All of the machines are connected to the university network, thus being accessible

from any computer within the campus network (either through wired or wireless

connection) or from the outside (via VPN connection).

C.2 Software

The grid is controlled by Sun Grid Engine (SGE3), a popular open-source software

specifically designed for this purpose.

The typical configuration of a grid managed by SGE consists of a “master com-

puter”, one or more “submission hosts”, and a variable number of “execution hosts”.

In our case, the iMac works both as master and submission host. This means that

it makes sure the entire system is working properly, and allows end-users to interact

with the grid submitting/stopping jobs, monitoring their status, setting different

levels of priorities for the various jobs, etc.. The four Xserve machines are all set up

as execution hosts, which means they receive the jobs submitted by the master and

execute them.

A NFS shared file system is used to make all the machines capable of read-

ing/writing data from/on the same files/folders.

3http://gridengine.sunsource.net/

XXXIV

Appendix D

Mathematical operations

In this final appendix we will provide a reference for some of the mathematical and

trigonometrical operations mentioned in the main body of this thesis.

D.1 Distances in three dimensions

The Euclidean distance between two points a and b both laying inside the same three

dimensional space can be calculated according to Equation D.1, where (xa, ya, za)

are the coordinates of point a and (xb, yb, zb) those of point b.

d =
√

(xa − xb)2 + (ya − yb)2 + (za − zb)2 (D.1)

D.2 Convert from degrees to radians and vice versa

The conversions from degrees to radians and from radians to degrees can be per-

formed utilising Equations D.2 and D.3 respectively.

degrees = radians× 180

π
(D.2)

radians = degrees× π

180
(D.3)

XXXV

D.3 Mean of circular quantities

In order to calculate the mean of several circular quantities a particular procedure

must be followed. Circular quantities cannot in fact be averaged as is typically done

for non-circular quantities, by simply adding all of them together and then dividing

the result by the amount of quantities considered.

The typical procedure followed consists in the following steps instead. First of all,

all the angles must be converted into their corresponding points on the unit circle,

e.g., α to (cosα, sinα). That is convert polar coordinates to Cartesian coordinates.

Then the arithmetic mean of these points can be computed. The resulting point will

lie on the unit disk and it can be converted back to polar coordinates. The resulting

angle is a reasonable mean of the input angles.

Equation D.4 shows a possible mathematical formalisation of this process based

upon complex numbers.

α = arg(
1

N
×

N∑
j=1

exp(i× αj)) (D.4)

D.4 Convert from WGS84 to ECEF navigation

coordinates

The two formulas below (Equation D.5 and D.6) show how to convert WGS84 GPS

data to the ECEF Cartesian system. lon and lat respectively correspond to GPS

longitude and latitude.

x = lon× π

180
× 6378000× cos(lat× π

180
) (D.5)

y = lat× π

180
× 6378000 (D.6)

